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Introduction 
It is clear from both a logistical and an economic viewpoint that the combustion of 
hydrocarbon fuels will continue to play a central role in US Air Force operations. In 
addition, with world events demanding enhanced flexibility in the sources of fuels, it is 
becoming increasingly important to improve scientific knowledge of the combustion 
properties of different fuel blends. Chemically reacting flows utilizing hydrocarbon fuel 
blends occur in a variety of energy conversion processes such as combustion, propulsion, 
and fuel reforming, to name just a few. They are also relevant to many material synthesis 
technologies. If the chemical transformations and, in some cases, attendant energy release 
can be made to happen in a well-controlled and well-defined fashion, the goal of either 
liberating heat, partially oxidizing a fuel, generating electrical power, or synthesizing 
advanced materials should be achievable with high efficiency and minimal pollution. 

Hydrocarbon fuels will remain a major source of energy well into the second half of the 
21 st century and, despite dire warnings about their limited supply, known resources have 
actually increased over the past decade. Nevertheless, finite supplies will continue to 
exert pressure on the efficient use of these fuels, especially as the price of oil continues to 
skyrocket. In the engineering of chemically reacting flows, increased efficiency and 
reduced pollution can be achieved via an integrated approach that extends the state-of- 
the-art of both experimental and computational methodologies. By making advances in 
each of these areas and by integrating them in well-conceived research programs, 
scientists will be able to have a dramatic impact on the design of technologies involving 
energy conversion and combustion. One of the most technically challenging engineered 
systems of importance to the Air Force in which chemically reacting flows play a critical 
role are gas turbines (GTs).   For aeropropulsion applications, there are no alternative 
energy replacements of GTs in sight. In addition, the majority of the electrical power to 
be added in the United States and around the world through 2015 will be based on GTs. 
Advances in GT engineering would inevitably affect the entire combustion industry, and 
the economic repercussions of these advances would be amplified further as critical 
combustion issues for GTs are also important to the transportation industry. Moreover, 
the economic payoff for US Military Operations could be enormous. 

Many contributions are needed to advance the frontiers of the science behind such 
engineered systems, and thereby to enhance the nation's economic base and help stabilize 
it against foreign competition and dependencies. The research will focus on the 
development of advanced computational methodologies that will enable reacting flow 
simulations which are more rapid and more accurate than those currently feasible, and 
which, on both counts, are capable of deepening an understanding of the fluid dynamics 
and aerothermochemistry underlying many vital technologies. Specifically, this research 
has considered numerical algorithms designed for the solution of gas-phase combustion 
with detailed transport and finite-rate chemistry. To help achieve these goals, a 
companion experimental program has been initiated in which the complexity of the 
various systems is being dissected into well-defined laboratory-scale problems, from 
which data can be provided for the validation of the computational models. 



Overview of the Implicit-Compact Solver 
The implicit-compact methods studied in this granting period have been designed to meet 
two well-known challenges in modeling time-dependent combustion: the stiffness 
induced by the vastly disparate timescales in the chemistry, which calls for implicit time 
integration; and the significant spatial structure in the flow field, which cannot be 
captured without high resolution, low diffusivity spatial discretizations. The main idea of 
a compact scheme discretization is to construct algebraic relationships between the values 
of a function and of its derivative at the nodes of a grid. These equations are written in 
matrix form; the matrices are banded, generally tridiagonal, and hence can be inverted 
efficiently. The coefficients are constant for a given grid and are defined by matching the 
terms of Taylor series expansions. The spatial discretizations used in this work have a 
variable order of accuracy, depending on the grid spacing and the presence of steep 
gradients near the domain boundaries. The maximum order is six and the minimum is 
three. Quite apart from their classical order of accuracy, the particular advantage of the 
compact schemes is their "spectral-like" resolution of moderately high wave numbers. In 
practice, this allows good accuracy over a long time with many fewer grid points than 
would be required by a traditional low order finite difference method. 

In the implicit-compact solver, the governing partial differential equations (PDEs) are 
semi-discretized using a compact finite difference procedure (a finite volume method 
could be used too). Then, after the spatial discretization, the system of ordinary 
differential equations is discretized with an A-stable backward difference formula (BDF), 
following the "method of lines" approach. The resulting nonlinear algebraic system is 
solved by a damped inexact Newton's method. An approximate solution to the linearized 
Newton system is obtained using an iterative Krylov method (GMRES) with an 
appropriate preconditioner (incomplete LU decomposition with a scaling/reordering 
preprocessor). The solver has been thoroughly tested on problems with known analytical 
solutions, thus verifying the correctness of all temporal and spatial discretizations. Seeing 
as the preconditioner is the most expensive part of the solution process, coarse-grain 
parallelism was introduced into this module by means of restricted additive Schwarz 
domain decomposition, implemented in a shared memory context by OpenMP pragmas. 
The payoff here was not significant (due to memory bandwidth issues, the code could 
only run effectively on 4-6 threads at once), and the extension of the domain 
decomposition algorithm to a distributed memory context remains a task for future work. 
As a result of an AFOSR DURIP award, the hardware for this work is already in place: a 
cluster with 128 cores, 512 GB of RAM, and several terabytes of disk, all connected via a 
high-speed DDR Infiniband fabric. 

The code has been written in Fortran. By now, almost all of the modules have been (at 
least partly) modernized to take advantage of Fortran 90/95 enhancements in the area of 
array processing, user-defined data structures, and data encapsulation in modules. The 
only exception is the MC64 code, which has been taken from the Harwell Subroutine 
Library. The Fortran for all of the problem-specific subroutines has been produced by a 
Mathematica code generation tool, as noted below. Partial listings of this script and of the 
residual and Jacobian subroutines created with it are attached as Appendices. 



Accomplishments: Modeling 

(a) Computing the pressure field: Originally, the plan was to work with a velocity- 
vorticity formulation of the fluid dynamical problem, a decision based primarily on the 
experience obtained in using vorticity-based methods to model flames. A side benefit 
here was that there would be no need to contend with the signature challenge of low 
speed flows: computing the pressure field. Before long, however, it became clear that the 
velocity-vorticity formulation leads to intractable linear systems in the Newton iteration 
for time-dependent problems discretized in space with compact schemes. Accordingly, 
during the first six months of the grant, the intended approach to the fluid dynamics was 
abandoned in favor of a primitive variables formulation. Since acoustic effects were not 
of primary interest, the zero Mach number approximation was employed in formulating 
the governing equations. As is standard in the modeling of low-speed flows, the 
hydrodynamic pressure was taken as the independent variable, thermodynamic pressure 
was constant, and the density was recovered from the ideal gas law. Note that, with a 
fully coupled solver, continuity can be enforced even though dynamic pressure is retained 
as the corresponding unknown. Also, by constructing the numerical method to take 
advantage of the natural coupling of the variables, a Poisson equation for pressure and a 
pressure projection step are not needed. In studying flow in a pipe, it was initially 
observed that the smoothness of the solutions tended to be very sensitive to the choice of 
grid; specifically, it was found that local under-resolution of the radial velocity field led 
to noticeable oscillations in the pressure field along most of the length of the pipe. The 
lesson learned was that the tight, global coupling of all unknowns in the implicit-compact 
discretization places high demands on the adequate spatial resolution of all structures and 
boundary layers in the flow field. Once this was achieved, the solver delivered strikingly 
smooth, accurate solutions, the likes of which it was impossible to achieve with 
traditional low order methods. These results have demonstrated that the notorious 
"pressure-velocity decoupling" problem, which manifests itself as an oscillatory pressure 
field in finite difference calculations using collocated grids, can be overcome by using 
compact schemes to discretize in space: 
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Contours of dynamic pressure, compact scheme (color) vs. low order method (black lines). 
Left: steady pipe flow (Re=500, pipe radius=0.4cm). Right: oscillating cold jet flow at 0.025 s. 
The small-amplitude grid-scale noise in the low order solutions is due to the pressure-velocity 
decoupling. 



(b) Unsteady multicomponent flows with thermal mixing: Before attempting to compute 
reacting flows it was imperative to move beyond simple flows and demonstrate the 
capability of the implicit-compact solver to model complicated multicomponent flows 
with thermal and species mixing. The work focused on jet flows in quasi-open 
axisymmetric geometries, where the flow configuration was chosen to mimic that of the 
diffusion flames which are the goal of this research. Here, "quasi-open" means that a 
solid wall was placed in the radial far-field of the computational domain, at a distance of 
many jet radii from the centerline. Though this introduced a flow recirculation zone near 
this wall, the velocities were very small and any difficulty of computing the recirculation 
was more than compensated by the ability to use a simple "no slip" Dirichlet boundary 
condition there for the velocity field. This took the complicated issue of open boundary 
conditions off the table where it was most likely to be a sticking point, in the radial far- 
field (homogeneous Neumann outflow conditions are probably feasible for the high order 
solver since the grids used in flame calculations are typically very long in the axial 
direction). Calculations of an oscillating heated jet issuing into quiescent cool air were 
undertaken. The reference calculations used the same low order discretization employed 
in a previously developed flame code, namely, second order centered differences for 
diffusive terms and first order (monotone) upwinding for convective terms. These 
solutions were ruined by strong artificial viscosity from the upwind differencing. By 
contrast, the calculations with the compact scheme discretization successfully captured 
the spatial structure of the flow, revealing a marked "pinching" in the temperature field 
that was qualitatively similar to the thermal structure of the time-varying diffusion flame 
studied at Yale in the laboratory of Marshall Long. Both calculations were run with a 
time step small enough to ensure that the spatial error dominated. A comparison of the 
results is presented in the figure below. 

Temperature contours in a forced, heated jet flow (Re=500, AT=100K), compact scheme (CS) 
vs. low order (LO) solution. The forcing frequency is 20 Hz. The images are taken at 0.0, 
0.0125, 0.025, and 0.0375 s. 



(c) Complex chemistry capability: A model premixed flame was studied in order to 
isolate the numerical challenges of realistic combustion thermochemistry from those 
relating to the fluid dynamics (the flow field is imposed in the model). Three convection- 
diffusion-reaction equations with exponentially nonlinear two-step Arrhenius chemistry 
were solved for temperature and two reacting species in a two-dimensional axisymmetric 
geometry. These calculations have provided a proof-of-concept that the implicit-compact 
methods can deliver accurate and efficient solutions to stiff multi-step chemistry 
combustion problems. These types of problems arise in modeling the combustion of 
aviation fuels of interest to the Air Force, and they create significant numerical 
challenges for both explicit methods (CFL restrictions) and many splitting methods 
(additional accuracy limitations due to splitting errors). Calculations of the steady, two- 
dimensional model flame were performed with both the compact scheme and the low 
order semi-discretizations, and the steady solutions were then used to initialize time- 
dependent calculations, where the imposed flow was periodically varying (much like in 
the oscillating jet flow discussed above). In the transient simulation, comparison of the 
compact scheme solution with the low order solution revealed the presence of numerical 
diffusion in the latter. This can be observed most clearly in the damping of the temporal 
oscillation of the intermediate species. This artifact of the spatial discretization had 
hampered earlier low order simulations of time-varying diffusion flames. The implicit- 
compact solver succeeds in generating spatially accurate solutions for such problems, and 
since it allows for large time steps the computational cost is reasonable. 
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Evolution of intermediate species concentration in the model premixed flame problem, 
compact scheme (CS) vs. low order (LO) solution. The frequency of oscillation is 10 Hz. The 
images are taken at 0.0, 0.02, 0.04, and 0.06 s, respectively. 

(d) Experimental validation of the solver: Concurrent with the numerical development 
was the construction of the experimental configuration for validating the new implicit- 
compact solver, which will be essential as the work transitions to detailed chemistry 
flame simulations. Toward the end of the granting period, a burner was tested in which 



fuel flows from a 0.4 cm inner diameter vertical tube (wall thickness 0.038 cm) into a 
concentric, 7.4 cm diameter oxidizer coflow. 

CAD drawing of the forced-flow burner used in the time-varying diffusion flame experiments. 

A speaker in the plenum of the fuel jet allows a periodic perturbation to be imposed on 
the exit parabolic velocity profile. The fuel is diluted with nitrogen and the velocities 
have been carefully tuned so as to produce a flame with negligible soot that is lifted 
above the burner surface, preventing heat transfer from the flame to the burner. These 
operating conditions have been designed to simplify the calculations in such a way that 
physical realism is not sacrificed. Recently, laser diagnostic techniques such as Raman 
and Rayleigh scattering have been used to measure temperature and major species 
profiles from flames using this burner. 

Accomplishments: Numerical Methods and Software 

(a) Efficient Jacobian operations for compact scheme discretizations: The first hurdle in 
developing the implicit-compact methodology has been to devise a set of highly efficient 
numerical algorithms for the formation, multiplication, and element-extraction of the 
Jacobian matrix, and to develop the means to implement these algorithms effectively in a 
large scientific code. The methods used to accomplish these tasks have come to maturity 
over the past few years. Though dense by any typical criterion of matrix sparsity, 
compact scheme Jacobians possess a latent structure based on the fact that they arise from 
a discretization of a PDE. The idea of decomposing the Jacobian into "local" and 
"spatial" components exploits this structure to achieve a form of data compression. To 
illustrate the idea: if U is the independent variable and F = F(U,Ux) is the residual, whicli 
is a function of U and its spatial derivative Ux, the Jacobian matrix in Newton's method 
can be reconstructed by considering Ux to be independent of U, forming the "local" 
Jacobian components dF/dU and the "spatial" Jacobian components dF/d(Ux), and 
observing that J = dF/dU + (dF/d(Ux))*Dx, where Dx is the appropriate coefficient of the 
differentiation matrix used to calculate Ux from U. The result of using this decomposition 



is that, even for the most memory intensive combustion problems, a Jacobian arising 
from a compact scheme spatial discretization can be stored with less memory than a 
conventional finite difference method would need to store an equivalent low order 
Jacobian. Moreover, once generated, the compact scheme Jacobian can be applied to a 
vector extremely efficiently, since J*V = (dF/dU)*V + (dF/d(Ux))*(Dx*V) = (dF/dU)*V 
+ (dF/d(Ux))*Vx. Here it is seen that J*V is equal to the sum of two dot products, one of 
the "local components" with the vector V and the other of the "spatial components" with 
the vector Vx. The fundamental operation in any iterative linear algebra routine is the 
matrix-vector product. With this algorithm it can be computed in O(N) flops. 

(b) Linear algebra enhancements I. Robust iterative methods: A fully coupled solution 
paradigm makes little sense without robust and efficient numerical linear algebra 
algorithms. These already exist for the low order spatial discretizations commonly used 
in computational combustion; for the compact discretizations, they have been discovered 
and fine-tuned during the tenure of this grant. In the first year, in the course of studying 
pipe flows, it was found that the use of large grids (i.e., many points) led to stagnation in 
the preconditioned Bi-CGSTAB linear solver. The difficulties were more severe than 
anything encountered using Bi-CGSTAB in solving combustion problems within the past 
fifteen years. To overcome them, a new iterative linear algebra module was developed 
and integrated into the implicit-compact solver. Based on GMRES, it enjoys the 
monotonicity and enhanced robustness of this method, while retaining the state-of-the-art 
MC64-ILUT preconditioner that has proven effective for the challenging linear systems 
produced by compact semi-discretization. The implementation made some sacrifices of 
efficiency for greater reliability, such as eschewing restarts and performing modified 
Gram-Schmidt with full re-orthogonalization for the Arnoldi process, though the penalty 
incurred was minimal for time-dependent problems, where the Jacobian matrices have 
large diagonal terms and the linear system solution is fast. In any case, even in the 
absence of optimizations, the new linear solver not only made it possible to solve 
problems that had previously caused the code to fail (e.g., a large binary mixing problem 
on very nonuniform grids), but also displayed significant performance gains over its 
predecessor (e.g., showing between a two- and five-fold decrease in the time spent 
solving linear systems). A decade ago, memory constraints made the use of GMRES in 
flame calculations much more difficult than it is today. 

(c) Linear algebra enhancements II. Robust preconditioning: The basic approach of 
applying a purely algebraic MC64-ILUT preconditioning algorithm to a pre-sparsified or 
"partial" Jacobian matrix is sound, but also potentially expensive and difficult to optimize 
due to the parameters in the algorithm. Early on, by performing a sequence of tests on 
basic fluid dynamics test problems one could sample enough of the parameter space of 
the preconditioner to come to a satisfactory understanding of how at least to get the 
incomplete factorization to work. With ILUT, it became clear that the drop tolerance was 
the more expensive and less effective parameter to tune. Hence, the strategy originally 
employed was to compute with a modest fill-in parameter and to recompute with more 
fill if the linear solver failed. As long as this worked, it was fine; however, as the 
difficulty of the physical models and the size of the problems were scaled up, both the 
heightened importance of the preliminary sparsification phase and the pressure, for the 
sake of computational efficiency, to form the preconditioner less frequently clarified a 



new question: when the linear solver fails, is this due to a specific problem with the ILL! 
or rather simply to an out-of-date or otherwise ineffective preconditioner? In the effort to 
answer this question, the linear solver module was enhanced by the addition of a number 
of inexpensive sanity checks that helped us to interpret the results of successful linear 
solves and to diagnose the cause of failures. By far the most frequent cause of failure was 
instability in the ILU. This was deduced by comparing the condition estimates of the ILU 
and of the preconditioned linear system, or rather, of the Hessenberg matrix constructed 
by GMRES, which represents the projection of this linear system onto the 
orthonormalized Krylov basis. A poorly conditioned ILU indicates instability in the 
incomplete factorization process; given a well conditioned ILU, a poorly conditioned 
Hessenberg suggests that the preconditioner is inaccurate. The diagnosis is 
straightforward, and in the former case, so is the cure: perturb the diagonal of the partial 
Jacobian and recomputed the ILU. This understanding was a breakthrough for two 
reasons. First, it meant that many, perhaps the majority of, failed linear solves could be 
rectified at essentially no increase in computational cost. Applying a diagonal 
perturbation is a negligible expense compared to the ILU, the ILU can be performed 
without increasing the level of fill-in, and if the perturbation is not large the resulting 
preconditioned Krylov process can still converge in a reasonable number of iterations. By 
contrast, the previous approach to addressing failure in the linear solver (recomputing the 
ILU with more fill-in) has a cost in terms of both memory usage and time which grows 
unpredictably with increasing fill. Second, the use of diagonal perturbations has allowed 
stabilized ILU factorizations of compact scheme partial Jacobians at much larger time 
steps than otherwise possible. This has again made it feasible to calculate steady solutions 
with the compact scheme solver for some large-scale problems where previously this had 
been out of the question (see the figure below, and discussion in (d)). 
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(d) Constructing good initial conditions for time-dependent problems: The semi- 
discretized governing equations for a transient flame problem in the primitive variable 
formulation are a system of differential-algebraic equations (DAEs). As is well known, a 
DAE requires consistent initialization: it is important to construct an initial condition that 
satisfies the algebraic constraints so as to avoid boundary layers and maintain accuracy in 
the early phase of the computations. Moreover, if high order spatial discretizations were 
used in moving from the original PDE to the DAE, this initial condition must itself meet 
strict smoothness requirements. A basic challenge for those employing high order 



methods is how to generate such an initial condition. In practice, one often wishes to use 
a steady-state solution for this purpose. This was the approach assumed at the inception 
of this research program. However, it was very difficult to generate a steady compact 
scheme solution from scratch using Newton iteration with pseudo-transient continuation, 
the method of choice for problems discretized with traditional low order finite 
differences. The source of the difficulty is that, contrary to their name and their 
reputation, the effective computational stencils of compact schemes are very wide (the 
inverse of a tridiagonal matrix is structurally dense), so Jacobian matrices based on 
compact scheme discretizations can be, and at steady state generally are, very far from 
diagonal dominance, and hence very difficult to precondition using known methods. As a 
workaround, a low-cost and effective means of computing satisfactorily smooth and 
accurate initial conditions for high order flow simulations was developed. The method 
takes the "inadequate" steady-state solutions produced by low order solvers and marches 
them in pseudo-time with moderately large time steps using the implicit-compact solver. 
This procedure has been greatly facilitated by progress in learning how to stabilize the 
ILU preconditioner at such time steps, as described above. 

(e) Code generator. At present, the entire computational kernel of the implicit-compact 
solver (the residual function, the Jacobian operations, and all of the problem-specific 
preconditioner routines) can be generated automatically in Fortran or C, by simply 
entering the partial differential equations and the boundary conditions in standard 
mathematical notation and executing a Mathematica script. For simplicity, vector 
calculus operators (Grad, Div) can be used in formulating the problem, which another 
freely available Mathematica package translates into the correct partial derivatives based 
on the geometry specified (Cartesian, Cylindrical, etc.). This software tool has drastically 
shortened the programming and debugging phases of code development, and after 
reaching its current mature state it has allowed the realization of a relatively fast 
turnaround on the study of new problems/problem formulations. In principle, this code 
generation script could be turned into a Mathematica package and made available to any 
researcher who employs finite difference methods to solve partial differential equations. 
As noted in the Overview section of this report, a partial listing of the script is attached as 
an Appendix to this report. 
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APPENDIX I: 

Mathernatica-bascd Code Generation Tool 

(partial code listing) 



Formulation-P Time-dependentPrimitive Variables, nb 

Primitive variable formulation of the 

PDEs 

governing time-dependent binary mixing 

Richard Dobbins January 2009 

Session 

O Working directory 

Directory!] 

SetDirectory["C:\\Documents and Settings\\rd\\My Documents 
\\Work - EngineeringW- RESEARCH -\\PROJECTS\\Fluids\\MixingPipe"] 

SetDirectory["F:\\PROJECTS\\Combustion\\OneStep_Diffusion"] 

F:\PROJECTS\Combustion\OneStep_Diffusion 

O Miscellaneous 

<< Format.m 

Make  sure  that  the package FortranDformat.m  is  not  already loaded,   or else 
FortranAssign's   formatting of   some  numbers  as  DP   constants  will  not  work  correctly! 

Off[General::"spelll"] 
Off[General::"spell"] 
NormalPageWidth = PageWidth / . Options[$Output,  PageWidth]; 
NotZeroQ[X_]   : = Not[Developer"ZeroQ[X]] ; 

O Error messages 

problemsetup::notcomplete = 

"Basic arrays (e.g. variables, derivatives, 
assumptionsRules) are not yet defined. Must complete problem setup.",- 

o PageWidth and linebreaking 



Formulation-P Time-dependentPrimitiveVariables.nb 

Definitions & initializations 

Problem setup 

O Coordinate system 

<< Calculus~VectorAnalysis~ 

SetCoordinates[Cylindrical[r, e, z]] 

Using NEW VectorAnalysis package which handles tensor operations 

Cylindrical[r, 6,  z] 

o Variables & material properties 

pres = P[t, r, e, z] ; 

vr = U[t, r, e,  z] ; 

ve = V[t, r, 0,  z] ; 

vz = W[t, r, 6,   z] ; 

v = {vr, v9, vz} ; 

temp = T[t, r, 6,   z] ; 

yk = YK[t, r, 8, z] ; 

p = RHO[pres, temp, yk] ; 

cp = CP [temp] ; 

Acp=LACP[temp]; (* A/cp - a simple function of T *) 

JJ = PRACP;       (* PR - Prandtl number *) 

1 
pDk =  Acp;  (* LEk - Lewis number of species k *) 

LEk 

vCr = UC[t, r, e, z] ; 

vC6 = VC[t, r, 6, z] ; 

vCz = WC[t, r, e, z] ; 

vC = {vCr, vC6, vCz); 

wdot = SOURCE[temp, yk] ; 

qdot = HEAT[temp, yk] ; 

gr = GR; 

g8 = GTHETA; 

gz = GZ; 

g = {gr, ge, gz); 
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O Governing equations 

n = 11  (Grad[v] + Transpose[Grad[v] ] ) + /JB - — n   Div[v] IdentityMatrix[3] ; 

(** deviatoric stress tensor **) 

Continuity-Equation = dtp + Div[p v] ; 

NavierStokesEquation = p dtv + p v.Grad[v] + Grad[pres] -pg - Div[n]; 

EnergyEquation = 

Acp                                                      qdot 
pdttemp + pv.Grad[temp]   - Div[AcpGrad[temp]] Grad[cp] .Grad[temp]  

cp cp 

SpeciesConservation = p dtyk + p •.Gradfyk] +Divfpykvc] - Div[pDk Grad[yk] ] -oidot; 

0 Boundary conditions 

(*   INLET   *) 
Blp = NavierStokesEquation[[3] ] ; 

Blu = vr; 

Blw = vz - Winlet; 

Bit = temp - Tinlet; 

Bly = yk - YKinlet; 

(* SYMMETRY *) 

B2p = 9rpres; 

B2u = vr; 

B2w = drvz; 

B2t = dr temp; 

B2y = dryk; 

(* WALL *) 

B3p = NavierStokesEquation[[1] ] ; 

B3u = vr; 

B3w = vz; 

B3t = temp - Twall; 

B3y = -pDkGrad[yk] [[!]]» 

(* no diffusion of species k into the wall: Vk-r Yk = 0, using Fick' s Law *) 

(* OUTLET *) 

B4p = pres - AtmPressure; 
B4u=d2vr + vr;     (*  Robin  condition *) 
B4w = dz vz; 
B4t = dztemp; 
B4y = azyk; 

O "Rules" expressing physical assumptions 
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O Assumptions made in this problem 

* 2-D axisymmetric flow (no swirl) 
* negligible bulk viscosity 
* axial gravity 

aosumptionsRules= 

{ 

(* steadyFlowRule, *) 

twoDimensionalAxisymmetricFlowRule, 

negligibleBulkViscosityRule, 

axialGravityRules 

} // Flatten; 

o Problem summary 

problem= "Time-dependent Axisymmetric Diffusion Flame with One-Step Chemistry"; 

equations= {"Continuity", "Radial Momentum", 

"Axial Momentum", "Temperature", "Species Conservation"}; 

equationnumbers = Range[Length[equations]]; 

boundaries= {"Inlet", "Axis of Symmetry", "Wall", "Outflow"}; 

variables = {P, U, W, T, YK}; 

species= {"CH4", "02", "C02", "H20", "N2"}; 

nspecies • Length[species]; (* number of species YK *) 

derivtypes= {r, z, rr, zz, rz}; 

nderivtypes = Length[derivtypes] ; 

Outer[StringJoin, Map[ToString, variables]. Map[ToString, derivtypes] ] // Flatten; 

derivatives • Map[ToExpression, %] ; 

Print[ 

"PROBLEM SUMMARY: ", problem, "\n", 

"Equations = ", equations, "\n", 

"Variables = ", variables, If[nspecies> 0, "\n", ""], 

If [nspecies > 0, "Species   -   ", ""], If [nspecies > 0, species, ""] 

]; 

PROBLEM SUMMARY: Time-dependent Axisymmetric Diffusion Flame with One-Step Chemistry 
Equations = {Continuity, Radial Momentum, Axial Momentum, Temperature, Species Conservation) 
Variables = {P, U, W, T, YK} 
Species   = {CH4, 02, C02, H20, N2 } 
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Compact Scheme code generation tools 

0 Translation from Mathematica expressions to code symbols 

derivativeTranslationRules: 

{ 

Derivative[0, 1, 0, 0] [A 

Derivative[0, 0, 1, 0][A_ 

Derivative[0, 0, 0, 1] [A 

Derivative[0, 2, 0, 0] [A 

Derivative[0, 0, 2, 0][A 

Derivative[0, 0, 0, 2][A 

Derivative[0, 1, 0, 1][A_ 

Derivative[0, 1, 1, 0][A 

Derivative[0, 0, 1, 1][A_ 

Derivative[1, 0, 0, 0] [A 

] [t, r, 8, z] :-» Symbol 

] [t, r, 9, z] :-> Symbol 

] [t, r, 8, z] :•• Symbol 

] [t, r, 8, z] :-> Symbol 

] [t, r, 6, z] :-> Symbol 

] [t, r, 8, z] :-» Symbol 

] [t, r, 8, z] :-> Symbol 

] [t, r, 8, z] :-» Symbol 

] [t, r, 8, z] :-» Symbol 

] [t, r, 6, z] :-» Symbol 

[ToString[A] <>"r"] 

[ToString[A] <>"q"] 

[ToString[A] <> "z"] 

[ToString[A] <> "rr" 

[ToString[A] <> "qq» 

[ToString[A] <> "zz» 

[ToString[A] <> "rz" 

[ToString[A] <> "rq" 

[ToString[A] <> "qz» 

[ToString[A] <> »t»] 

(* derivative w.r.t. p   *) 

Derivative^, 0, 0] [A] [P[t, r, 8, z] , T[t, r, 8, z] , YK[t, r. 

Symbol[ToString[A] <>"p"], Derivative[0, 1, 0][A_][P[t, r, 

T[t, r, 8, z] , YK[t, r, 8, z] ] :-» Symbol[ToString[A] <> "t"] , 

Derivative[0, 0, 1] [A_] [P[t, r, 8, z] , T[t, r, 6,   z] , YK[t, r. 

Symbol[ToString[A] <> "y"] , 

Derivative^, 0, 0] [A] [P[t, r, 6, z] , T[t, r, 8, z] , YK[t, r, 

Symbol[ToString[A] <> "pp"], 

Derivative[0, 2, 0][A_][P[t, r 

Symbol[ToString[A] <> "tt"], 

Derivative[0, 0, 2][A_][P[t, r 

Symbol[ToString[A] <> "yy"], 

Derivative[l, 1, 0] [A_] [P[t, r, 0,  z] , T[t, r, 6, z] , YK[t, r. 

Symbol[ToString[A] <> "pt"], 

Derivative^, 1, 1] [A_] [P[t, r, e, z] , T[t, r, 8, z] , YK[t, r. 

Symbol[ToString[A] <>"ty"], 

Derivative^, 0, 1] [A_] [P[t, r, 9, z] , T[t, r, 8, z] , YK[t, r. 

Symbol[ToString[A] <> "py"]. 

0.  z] , T[t, r, 8, z] , 

8, z], T[t, r, 8, z] , 

YK[t, r, 

YK[t, r. 

8, z] 

8, z] 

8, z] 

8, z] 

8, z] 

8, z] 

8, z] 

8, z] 

8, z] 

Derivativefl] [A_] [T[t, r, 8, z] ] :-> Symbol [ToString [A] <>"t"], 

Derivative[2] [A] [T[t, r, 8, z]] :-» Symbol [ToString [A] <>"tt"] 

}; 

toCodeNotation[pde_] := 

( 
( 
Expand[pde] /. derivativeTranslationRules 

) /. {A_[t, r, 8, z] -> A} 

) /. {A_[P, T, YK] ->A, A_[T] -» A} / . (A_[T, YK] -> A} 
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O Array pointers 

(* "pad" pointers with, spaces where needed to improve code legibility *) 

padPointers[ptrs_] := 

Module[{ptrnames, newptrnames= {}, ptrvalues, nptrs, paddedlength, i, ptrinchars}, 

ptrnames=ptrs[[All, 1] ] ; 

ptrvalues = ptrs[[All, 2] ] ; 

nptrs - Length[ptrnames]; 

paddedlength = Max [StringLength/@ ptrnames] ; 

For[i = 1, i $ nptrs, i+ + , 

ptrinchars = Characters[ptrnames[[i]]]; 

If[paddedlength > Length[ptrinchars], 

ptrinchars = PadRight[ptrinchars, paddedlength, " "] , ]; 

AppendTo[newptrnames, Stringjoin[ptrinchars]] ; 

]; 
Return[Table[{newptrnames[[i] ] , ptrvalues[[i]]}, {i, nptrs}]]; 

]l 

Module[ 

{ 

i , 

indexHeadEgns = "Meqn", 

indexHeadVars= "Mvar", 

indexHeadDers= "Kder", 

indname, 

indindx 

}. 

If[Not[VectorQ[equationnumbers] ] | | 

Not[VectorQ[variables]] | | Not[VectorQ[derivatives]], 

Message[problemsetup::notcomplete] ; Abort[];, ] ; 

Clear[indicesEqns, indicesVars, indicesDers]; 

indicesEqna • StringJoin[indexHeadEqns, #] & /@ (ToString /@ variables); 

indicesVars = StringJoin[indexHeadVars, #] & /@ (ToString /@ variables); 

indicesDers = StringJoinfindexHeadDers, #] t /@ (ToString /@ derivatives); 

indicesEqns= Table[(indicesEqns[[i]], i}, {i. Length[indicesEqns]}] 

indicesVars=Table[{indicesVars[[i]], i), (i, Length[indicesVars]}] 

indicesDers=Table[{indicesDers[[i]], i}, {i. Length[indicesDers]}] 

If[nspecies> 1, 

{indname, indindx) = Position[indicesEqns, "MeqnYK"] // Flatten; 

indicesEqns = ReplacePart[ 

indicesEqns, 

StringJoinf"(/ (", 

ToString[indicesEqns[[indname, indindx+1] ]] , "-1+k, k=l,NSP_P) /)"] 
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(indname,   indindx+1} 

]; 
{indname, indindx) =Position[indicesVars, "MvarYK"] //Flatten; 

indicesVars = ReplacePart[ 

indicesVars, 
StringJoin["(/ (", 

ToString[indicesVars[[indname, indindx+1]]], "-1+k, k=l,NSP_P) /)"], 

{indname, indindx+1} 

]; 
YKdernames = Select[indicesDers[[All, 1]], StringMatchQ[#, "*YK*"] &] ; 

indlist = Flatten[Position[indicesDers, #] & /@YKdernames, 1] ; 

Do[ 

{indname, indindx) = indlist[[k]]; 

indicesDers = ReplacePart[ 

indicesDers, 
StringJoin["(/ (", ToString[indicesDers[[indname, indindx+1]]], 
"+(k-l)*NDRTP_P, k=l,NSP_P) /)"], 

{indname, indindx+1} 

]:. 

{k, Length[indlist]} 

}> 
,   (* ELSE *) 

]; 

indicesEqns = indicesEgns // padPointers; 

indicesVars = indicesVars // padPointers; 
indicesDers = indicesDers // padPointers; 

0 Code symbols 

Options[writeCodeSymbols] = 

{ 
codeform -» FortranForm, 
indent -» "      " , 

tocode -• {} 

}; 

writeCodeSymbols::usage • 

"writeCodeSymbols[symbolarray,output,options ]:\n 

Writes the symbols (variables, derivatives, etc.) in a given 

PDE in code form. Options work as in Jacobian components routines. 
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writeCodeSymbols[symbolarray, output, options ]   := 

Module[ 

{ 
lhs, rhs, eqn, sublistlength, 

sublistwidth, symbol, symboll, symbol2, symbol3, symbolinchars, 

paddedlength = 4, (** number of chars/spaces between 1st char and " =" **) 

MyCodeForm=codeform /. {options} /. Options[writeCodeSymbols], 

MyCodelndent • indent /. {options} /. Options[writeCodeSymbols], 

MyToCode= tocode /. {options} /. Options[writeCodeSymbols] 

}. 

sublistwidth • Dimensions[symbolarray] [[1]]; 
If [sublistwidth == 1, 
symbol • ToString[symbolarray[[1]]]; 

If [output ~ 1 | | output == 3, Print[symbol, " = ", "\n"],]; 

symbolinchars = Characters[symbol]; 

If[Length[symbolinchars] < paddedlength, 

symbol = StringJoin[PadRight[symbolinchars, paddedlength, " "]],]; 

lhs = StringJoin[MyCodelndent, symbol, " = •] ; 

MyToCode= Flatten[Append[MyToCode, {"\n", lhs}]]; 
, (** ELSE **) 
symboll = ToString[symbolarray[[1]]]; 

symbol2 = ToString[symbolarray[[2] ] ] ; 
symbol3 = ToString[symbolarray[[3] ] ] ; 

If [output ~ 1 | | output == 3, 
Print[symboll, " = ", symbol2, " (" , symbol3, ",ind)", "\n"],]; 

symbolinchars = Characters[symboll]; 
If[Length[symbolinchars] < paddedlength, 

symboll=StringJoin[PadRight[symbolinchars, paddedlength, " "]],]; 
lhs = StringJoin[MyCodeIndent, symboll, " = " ] ; 

rhs=StringJoin[symbol2, "(", symbol3, ",ind)"]; 
MyToCode=Flatten[Append[MyToCode, {"\n", lhs, rhs}]]; 

]; 

If[FreeQ[{options}, tocode]. 

If [ (output == 2 | | output == 3) , Print e@ MyToCode,] , 

Return[MyToCode] 

]; 

].- 
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0 Equation residuals 

Options[writeEquationResidual] = 

{ 
codeform-> FortranAssign, 

indent -» "      " , 

tocode -» {} 

}; 

writeEquationResidual::usage = 

"writeEquationResidual[pde,pdeindex,output,options ]:\n 

Writes the equation residual for a given PDE 

in code form. Options work as in Jacobian components routines."; 

writeEquationResidual[pdein_, pdeindex_, output, options ] := 

Module[ 

{ 
lhs, rhs, eqn, 

MyCodeForm=codeform /. {options} /. Options[writeEquationResidual], 

MyCodelndent= indent /. {options} /. Options[writeCodeSymbols], 
MyToCode= tocode /. {options) /. Options[writeEquationResidual] 

}. 

pde = pdein; 

If [output == 1 | | output == 3, Print ["F =  ",pde, "\n"],]; 

lhs=StringJoin[MyCodelndent, "EQ0(", indicesEqns[[pdeindex, 1]], ",ind) 
rhs = MyCodeFormfpde, 

AssignBreak-» {1000, "\n    &"}, 
Assignlndent -> " " , 

AssignOptimize -» False, 
AssignPrecision-»Infinity, 

AssignTemporary-» {"tmpO", Sequence} 

][[i]] ; 
MyToCode= Flatten[Append[MyToCode, {"\n", lhs, rhs}]]; 

If[FreeQ[{options}, tocode]. 

If [ (output == 2 | | output == 3) , Print @@ MyToCode,] , 
Return[MyToCode] 

]; 

]; 
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O Local components of the Jacobian 

Options[jacobianLocalComponents] = 

{ 
codeform-» FortranAssign, 

indent -> "      " , 

tocode -» { } 

}; 

jacobianLocalComponents::usage = 

"jacobianLocalComponentsfpde,pdeindex,vars,output,options ]:\n 

* 'pde' is the equation in symbolic form; ' 

pdeindex1 is the number of this PDE in the system of PDEs\n 

* 'vars' is a list of all possible variables (unknowns) 

which can occur in the equations\n 

* 'output' is a flag which determines whether Mathematica summaries of 

the components or actual code is written (1 • Mathematica only, 

2 = code only, 3 = both); current settings generate Fortran code\n 

* 'options' is a sequence of rules (not required)"; 

jacobianLocalComponents[pdein_, pdeindex , vars , output, options ] := 

Module[ 

{ 
lhs, rhs, 

MyCodeForm= codeform  /.    {options}   /.   Options[jacobianLocalComponents] , 
MyCodelndent= indent  /.   {options}   /.   Options[writeCodeSymbols], 
MyToCode= tocode  /.   {options}    /.   Options[jacobianLocalComponents] 

}. 

pde = pdein//. jacobianldealGasRule; 

Do[ 

var = vars[[k]]; 

tmpO = D[pde, var] ; 

If [var = = = T, tmpl = LACPtD[pde, LACP] , tmpl = 0] ; 

If [var = = = T, tmp2 = CPt D[pde, CP] , tmp2 = 0] ; 

If [var = = = T, tmp3 = LACPttD[pde, LACPt] , tmp3 = 0] ; 

If[var= = =T, tmp4 = CPtt D[pde, CPt] , tmp4 = 0] ; 

If [var = = = YK, tmp5 = WMyD[pde, WM] , tmpS = 0] ; 

DJ[pdeindex, k] = 

( (tmpO + tmpl + tmp2 + tmp3 + tmp4 + tmp5) // Expand) // . jacobianldealGasRestoreRuleE 

If[ 
DJ[pdeindex, k] =1=0, 

If [output == 1 | | output == 3, 

Print["d F", ToString[pdeindex], 

" / d (", vars[[k]], ") =  ", DJ[pdeindex, k] , "\n"],]; 
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lhs = StringJoin[MyCodeIndent, "DJ(", indicesEqns[[pdeindex, 1] ] , 

",", indicesVars[[k, 1] ] , ",ind) = "]; 

rhs = MyCodeForm[DJ[pdeindex, k] , 

AssignBreak -> {1000, "\n    &"}, 

Assignlndent -» "", 

AssignOptimize -» False, 

AssignPrecision->Infinity, 

AssignTemporary-» {"tmpO", Sequence} 

][[1]] I 
MyToCode=Flatten[Append[MyToCode, {"\n", lhs, rhs}]]; 

, (* ELSE *) 

]; 

, {k, Length[vars]} 

]l 

If[FreeQ[{options}, tocode], 

If [ (output =- 2 | | output == 3) , Print @@ MyToCode,] , 

Return[MyToCode] 

]l 

]; 

O Time derivative (diagonal) terms of the Jacobian 

Options[j acobianTimeDerivatives] = 

{ 

codeform -» FortranAssign, 

indent -» "      " , 

tocode -» {} 

}; 

jacobianTimeDerivatives::usage = 

"j acobianTimeDerivatives[pde,pdeindex,vars,output,options ]:\n 

* 'pde' is the equation in symbolic form; ' 

pdeindex1 is the number of this PDE in the system of PDEs\n 

* 'vars1 is a list of all possible variables (unknowns) 

which can occur in the equations\n 

* 'output' is a flag which determines whether Mathematica summaries of 

the components or actual code is written (1 = Mathematica only, 

2 = code only, 3 = both); current settings generate Fortran code\n 

* 'options' is a sequence of rules (not required)"; 

jacobianTimeDerivatives[pdein_, pdeindex_, vars_, output, options ] := 

Module[ 

{ 

lhs, rhsl, rhs2, 

MyCodeForm=codeform /. {options} /. Options[jacobianLocalComponents] 



Formulation-P Time-dependentPrimitive Variables, nb 12 

MyCodelndent=indent /. {options} /. Options[writeCodeSymbols], 

MyToCode= tocode /. {options} /. Options[jacobianLocalComponents], 

tders, tmptders 

}. 

tmptders • Outer[ StringJoin, Map[ToString, vars], {"t"} ] // Flatten; 

tders • Map[ToExpression, tmptders]; 

Remove[tmptders]; 

pde = pdein //. jacobianldealGasRule; 

Do[ 

tmp=D[pde, tders[[k]]]; 

DJT[pdeindex, k] = tmp / / . jacobianldealGasRestoreRules; 

If[ 
DJT[pdeindex, k] =1=0, 

If [output == 1 | | output == 3, 

Print["d F", ToString[pdeindex], 

" / d (", tders[[k]], ") =  ", DJT[pdeindex, k] , "\n"],]; 

lhs = StringJoin[MyCodelndent, "DJ(", indicesEqnsf[pdeindex, 1] ] , 

",", indicesVars[[k, 1]], ",ind) = "]; 

rhsl = StringJoin["DJ(", indicesEqns[[pdeindex, 1] ] , ",", 

indicesVars[[k, 1]], ",ind) + "]; 

rhs2 = MyCodeForm[DJT[pdeindex, k] ddt, 

AssignBreak-» {1000, "\n    &"}# 

Assignlndent -» "", 

AssignOptimize->False, 

AssignPrecision-• Infinity, 

AssignTemporary-» {"tmpO", Sequence} 

][[i]] ; 

MyToCode= Flatten[Append[MyToCode, {n\nn, lhs, rhsl, rhs2}]]; 

, (* ELSE *) 

]; 

, {k, Length[vars]} 

]i 

If[FreeQ[{options}, tocode], 

If [ (output == 2 | | output == 3) , Print @@ MyToCode,] , 

Re turn[MyToCode] 

]; 

]; 

O Spatial components of the Jacobian 
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Options[j acobianSpatialComponents]  = 

{ 
codeform-t FortranAssign, 

indent -» "     " , 

tocode -> {} 

}; 

jacobianSpatialComponents::usage = 

"jacobianSpatialComponents[pde,pdeindex,derivs,output,options ]:\n 

* 'pde' is the equation in symbolic form; ' 

pdeindex1 is the number of this PDE in the system of PDEs\n 

* 'derivs1 is a list of all possible derivatives which can occur in the equations\n 

* 'output' is a flag which determines whether Hathematica summaries 
of the components or actual code is written (1 = Hathematica only, 

2 = code only, 3 = both); current settings generate Fortran code\n 
* 'options' is a sequence of rules (not required)"; 
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jacobianSpatialComponents[pdein_, pdeindex_, derivs_, output_, options ]   := 

Module[ 

{ 
lhs,  rhs,  eqn, 
MyCodeForm=codeform /. (options) /. Options[jacobianSpatialComponents], 

MyCodelndent=indent /. {options} /. Options[writeCodeSymbols], 

MyToCode= tocode /. {options} /. Options[jacobianSpatialComponents] 

}. 

pde = pdein//. jacobianldealGasRule; 

Do[ 

tmp = D[pde, derivs[[k]]]; 

DQ[pdeindex, k] = tmp//. jacobianldealGasRestoreRules; 

If[ 

DQ[pdeindex, k] =!= 0, 

If [output == 1 | | output == 3, 

Print["d F", ToString[pdeindex], 

" / d (", derivs [ [k] ] , ») =  ", DQ[pdeindex, k] , "\n"],]; 

lhs=StringJoin[MyCodelndent, "DQ(", indicesEqns[[pdeindex, 1]], 

",", indicesDers[[k, 1]], ",ind) = '•]; 

rhs = MyCodeForm[DQ[pdeindex, k] , 

AssignBreak -» {1000, "\n    &"}, 

Assignlndent-» "", 

AssignOptimize -> False, 

AssignPrecision-»Infinity, 

AssignTemporary-» {"tmpO", Sequence} 

][[!]] ; 

MyToCode= Flatten[Append[MyToCode, {"\n", lhs, rhs}]]; 

, (* ELSE *) 

]i 

, {k, Length[derivs]} 

]; 

If[FreeQ[{options}, tocode]. 

If [ (output == 2 | | output == 3) , Print @@ MyToCode,] , 

Re turn[MyToCode] 

]; 

]; 
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RESIDUALS & JACOBIAN - INTERIOR POINTS 

• Pressure 

O Residuals 

pde = ContinuityEquation; 

pde = pde / . assumptionsRules// Expand; 

pde = (r * pde) // Expand; 

PDE[1] = toCodeNotation[pde] //. equationsIdealGasRules 

Remove[pde]; 

Pt r RHO   r RHO Tt Pr r RHO U   r RHO Tr U 
RHO U + + r RHO Ur + 

P T P T 
PzrRHOW   rRHOTzW      „„   r RHO U WM YKr   r RHO WM YKt   r RHO W WM YKz 
 + r RHO Wz 

WK WK WK 

O Jacobian 

jacobianLocalComponents[PDE[l] , 1, variables, 1] ; 

jacobianTimeDerivatives[PDE[l] , 1, variables, 1] ; 

jacobianSpatialComponents[PDE[l] , 1, derivatives, 1] ; 

, . ,„,      rRHOTt  RHOU  r RHO Tr U  r RHO Ur 
d  Fl   /  d     P     = • +  

PT P PT P 
rRHOTzW       rRHOWz       r RHO U WM YKr       r RHO WM YKt       r RHO W WM YKz 

P T P P WK P WK P WK 

Pr r RHO  r RHO Tr   r RHO WM YKr 
d Fl / d (U) =  RHO •  -  + 

d Fl / d (W) 

d Fl / d (T) 

WK 

Pz r RHO  r RHO Tz   r RHO WM YKz 
WK 

PC r RHO  2 r RHO Tt   RHO U  Pr r RHO U  2 r RHO Tr U   r RHO Ur 
p T <p2 T p >p >J»2 >p 

PzrRHOW        2 rRHOTzW        rRHOWz        r RHO U WM YKr        r RHO WM YKt        r RHO W WM YKz 
P T T2 T T WK T WK T WK 

j „, , j ,„„>     Pt r RHO WM  rRHOTtWM  RHO U WM  Pr r RHO U WM  r RHO Tr U WM  r RHO Ur WM 
a Fl / a (YK) = +   -   -   +   -   

P WK T WK        WK P WK T WK WK 

PzrRHOWWM  rRHOTzWWM  r RHO WM Wz  2 r RHO U WM2 YKr  2 r RHO WM2 YKt   2 r RHO W WM2 YKz 
TWK WK 

d Fl / d (Pt) =  -^5. 

d Fl / d (Tt) =  -i^- 
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d Fl   /  d   (YKt) 

d  Fl   /  d   (Pr) 

d  Fl   /  d   (Pz) 

d  Fl   /   d   (Tr) 

d   Fl   /   d   (Tz) 

d  Fl   /   d   (YKr) 

d  Fl   /   d   (YKz) 

Radial velocity 

o Residuals 

r RHOWM 
WK 

rRHOU 

r RHOW 

d  Fl   /   d   (Ur)   =     r RHO 

d  Fl   /   d   (Wz)   =     r RHO 

r RHOU 

r RHO W 

r RHO U WM 

r RHO W WM 
WK 

pde = NavierStokesEquation[[1] ] ; 

pde = pde / . assumptionsRules   // FullSimplify //   Expand; 

pde s  (r2  * pde)   //   Expand; 

PDE[2] M toCodeNotation[pde] //. equationsIdealGasRules 

Remove[pde]; 

,  4 LACP PR U   2 4 4 , 
Pr r2 +   + — LACPt PR r Tr U LACP PR r Ur LACPt PR r2 Tr Ur 

3       3 3 3 

r2 RHO U Ur LACP PR r2 Urr + r2 RHO Ut - LACPt PR r2 Tz Uz - LACP PR r2 Uzz + 

r2 RHO Uz W - LACPt PR r2 Tz Wr - — LACP PR r2 Wrz + — LACPt PR r2 Tr Wz 
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O Jacobian 

jacobianLocalComponents[PDE[2] , 2, variables, 1]; 

jacobianTimeDerivatives[PDE[2] , 2, variables, 1] ; 

jacobianSpatialComponents[PDE[2] ,  2, derivatives,  1] 

j   „„    ,   J    ,„,            r2RHOUUr       r2 RHO Ut       r2 RHO Uz W 
d  F2   /   d   (P)   =  +  +  

4 LACP PR        2 
d  F2   /   d   (U)   =  + — LACPt PR r Tr + r2 RHO Ur 

d   F2   /   d   (W)   =     r2 RHOUz 

4 LACPt PR U   2 4 
d F2 /d (T) =  * — LACPCt PR r Tr U - — LACPt PR r Ur - 

4 , r2 RHO U Ur       4 , r2 RHO Ut , 
— LACPtt PR r2 Tr Ur — LACPt PR r2 Urr LACPtt PR r2 Tz Uz - 3 T 3 T 

r2 RHO Uz W 12 
LACPt PR r2 Uzz LACPtt PR r2 TzWr-- LACPt PR r2 Wrz + — LACPtt PR r2 Tr Wz 

,.,„„,               r2 RHO UUrWM       r2 RHO Ut WM       r2 RHO Uz W WM 
d   "   '   d   lYK>    = WK WK WK  

d  F2   /   d   (Ut)   =     r2 RHO 

d  F2   /   d   (Pr)   =     r2 

d F2 / d (Ur) =  -— LACP PR r - — LACPt PR r2 Tr + r2 RHO U 

d F2 / d (Uz) =  -LACPt PR r2 Tz + r2 RHO W 

d F2 / d (Urr) =  - -i- LACP PR r2 

d F2 / d (Uzz) =  -LACP PR r2 

d F2 / d (Wr) =  -LACPt PR r2 Tz 

d F2 / d (Wz) = ~  LACPt PR r2 Tr 

d F2 / d (Wrz) =  --i- LACP PR r2 

2 4 2 
d F2 / d (Tr) =  — LACPt PR r U - -^ LACPt PR r2 Ur » — LACPt PR r2 Wz 

d F2 / d (Tz) =  -LACPt PR r2 Uz - LACPt PR r2 Wr 
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Axial velocity 

O Residuals 

pde • NavierStokesEquation[[3] ] ; 

pde = pde / . assumptionsRules // FullSimplify // Expand; 

pde = (r * pde) // Expand; 

PDE[3] = toCodeNotation[pde] //. equationsIdealGasRules 

Remove[pde]; 

2 2 1 
Pz r - GZ r RHO + — LACPt PR Tz U + — LACPt PR r Tz Ur - — LACP PR r Urz - 

LACP PR Uz 
 LACPt PR r Tr Uz - LACP PR Wr - LACPt PR r Tr Wr + r RHO U Wr 

4 4 
LACP PR r Wrr + r RHO Wt LACPt PR r Tz Wz + r RHO W Wz LACP PR r Wzz 

3 3 
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o Jacobian 

jacobianLocalComponents[PDE[3] , 3, variables, 1]; 

jacobianTimeDerivatives[PDE[3] , 3, variables, 1]; 

jacobianSpatialComponents[PDE[3] , 3, derivatives,  1] ; 

GZ r RHO       r RHO U Wr       r RHO Wt       r RHO W Wz 
d  F3   /   d   (P)   =  •  •  5  •  

d   F3   /   d   (U)    =       2 LACPt PR Tz   , r ^ Wr 

d  F3   /   d   (W)   =     r RHO Wz 

GZ r RHO       2 2 
d  F3   /   d   (T)   =  + — LACPtt PR Tz U + — LACPtt PR r Tz Ur - 

•i- LACPC PR r Urz -  LACPt PRUz  . LACPtt PR r Tr Uz - LACPt PR Wr - LACPtt PR r Tr Wr - 

rRHOUWr r RHO Wt       4 rRHOWWz       4 
LACPt PR r Wrr = -=r LACPtt PR r Tz Wz = — LACPt PR r Wzz T T3 T 3 

GZrRHOWM       rRHOUWMWr       r RHO WM Wt       r RHO W WM Wz 
d   F3   /   d   (YK)   = 

WK WK WK WK 

d   F3    /   d    (Wt)    =      r RHO 

d  F3   /   d   (Pz)   =     r 

d   F3   /   d   (Ur)   =      —LACPt PR r Tz 

LACP PR 
d  F3   /   d   (Uz)   = LACPt PR r Tr 

d   F3   /   d   (Urz)    =     --i-LACPPRr 

d  F3   /   d   (Wr)    =     -LACP PR - LACPt PR r Tr + r RHO U 

d  F3   /   d   (Wz)   =     -— LACPt PR r Tz • r RHO W 

d  F3   /   d   (Wrr)    =     -LACP PR r 

4 
d  F3   /   d   (Wzz)   =     -—LACP PR r 

d F3 / d (Tr) =  -LACPt PR r Uz - LACPt PR r Wr 

2 LACPt PR U   2 4 
d F3 Id   (Tz) =  • —  LACPt PR r Ur - — LACPt PR r Wz 
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Temperature 

O Residuals 

pde = EnergyEquation; 

pde = pde / . assumptionsRules // Expand; 

pde = (r * pde) // Expand; 

PDE[4] = toCodeNotation[pde] //. equationsIdealGasRules 

Remove[pde]; 

HEAT r CPt LACP r Tr2 , 
 LACP Tr LACPt r Tr2 - LACP r Trr + 

CP CP 
CPt LACP r Tz2 

r RHO Tt LACPt r Tz2 - LACP r Tzz + r RHO Tr U + r RHO Tz W 
CP 
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O Jacobian 

jacobianLocalComponents[PDE[4] , 4, variables, 1) ; 

jacobianTimeDerivatives[PDE[4] , 4, variables, 1] ; 

jacobianSpatialComponents[PDE[4] , 4, derivatives, 1] ; 

. „  ,_,,„,    rRHOTt  rRHOTrU  rRHOTzW 
d F4 / d (P) =   -  +  +  

d F4 / d (U) =  r RHOTr 

d F4 / d (W) =  r RHOTz 

, .  m     CPtHEATr  ..       CPt
2 LACP r Tr2   CPttLACPrTr2 

d F4 / d (T) =   = LACPt Tr < 
CP2 CP2 CP 

CPt LACPt rTr2      _ „__         _  ,                                   rRHOTt       CPt2 LACP r Tz2 

LACPt t r Tr2 - LACPt r Trr  
CP T CP2 

CPttLACPrTz2   CPt LACPt r Tz2 , r RHO Tr U  r RHO Tz W 
 = -= LACPtt r Tz2 - LACPt r Tzz  CP CP T T 

d (YK\ r RHO Tt WM  r RHO TrUWM  r RHO TzWHM 
(  ' WK WK "  WK 

d F4 / d (Tt) =  r RHO 

2 CPt LACP r TIT 
d F4 / d (Tr) =  -LACP — 2 LACPt r Tr + r RHO U 

2 CPt LACP r Tz 
d F4 / d (Tz) = — 2 LACPt r Tz * r RHO W 

d F4 / d (Trr) =  -LACP r 

d F4 / d (Tzz) =  -LACP r 
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• Species 

o Residuals 

pde = SpeciesConservation; 

pde = pde / . assumptionsRules // Expand; 

pde = (r * pde) // Expand; 

PDE[5] = toCodeNotation[pde] //. equationsIdealGasRules 

Remove[pde]; 

Pr r RHO UC YK  r RHO Tr UC YK 
- r SOURCE + RHO UC YK + + r RHO UCr YK + 

P T 
PzrRHOWCYK   r RHO Tz WC YK    „„„,,„ ,„,  LACP YKr   LACPt r Tr YKr 

+ r RHO WCz YK - 
P T LEk LEk 

r RHO U YKr + r RHO UC YKr + r RH° UC "M YK YKr - LACP * YKrr + r RHO YKt - 
WK LEk 

LACPt rTzYKz      „        „„«„„,,,,   r RHO WC WM YK YKz   LACPrYKzz 
r RHO W YKz + r RHO WC YKz + 

LEk WK LEk 

O Jacobian 

jacobianLocalComponents[PDE[5] , 5, variables, 1] ; 

jacobianTimeDerivatives[PDE[5] , 5, variables, 1] ; 

jacobianSpatialComponents[PDE[5] , 5, derivatives, 1] ; 

d F5 / d (P) = 
RHO UC YK   r RHO Tr UC YK   r RHO UCr YK   r RHO Tz WC YK   r RHO WCz YK   r RHO U YKr 

P PT P PT P P 
r RHO UC YKr  r RHO UC WM YK YKr  r RHO YKt   r RHO W YKz   r RHO WC YKz   r RHO WC WM YK YKz 

d F5 / d (U) =  r RHO YKr 

d F5 / d (W) 

d F5 / d {Tj 
RHO UC YK  Pr r RHO UC YK  2 r RHO Tr UC YK  r RHO UCr YK 

<-n P T T^ T 
PzrRHOWCYK  2 r RHO Tz WC YK  r RHO WCz YK  LACPt YKr  LACPttrTrYKr 

P T T2 T LEk LEk 
r RHO U YKr   rRHOUCYKr   r RHO UC WM YK YKr   LACPt r YKrr   r RHO YKt 

T T T WK LEk T 
LACPttrTzYKz  r RHO W YKz  r RHO WC YKz  r RHO WC WM YK YKz   LACPt r YKzz 

LEk T T TWK LEk 

d F5 / d ,YK) =  RHOUC, ^ r RHO UC _ r RHO^Tr UC ^ f ^ ^ ^ Pz r RHO WC _ 

rRHOTzWC   _.,„,._   RHOUCWMYK  Pr r RHO UC WM YK  r RHO Tr UC WM YK 
+ r RHO WCz • 

T WK P WK T WK 
r RHO UCr WM YK  Pz r RHO WC WM YK  r RHO Tz WC WM YK  rRHOWCzWMYK  r RHO U WM YKr 

WK PWK TWK WK WK 
2 r RHO UC WM2 YK YKr   r RHO WM YKt   r RHO W WM YKz   2 r RHO WC WM2 YK YKz 

d F5 / d (YKt) 
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„ „,. , J ,,< ,     rRHOUCYK d F5 / d (Pr) =  

j „„ , J ,r,      rRHOWCYK d F5 / d (Pz) =  

r RHO UC YK  LACPt r YKr 
d F5 / d (Tr) =  

LEk 

. „r ,    .    _ .      rRHOWCYK  LACPt r YKz d F5 / d (Tz) =  
LEk 

. „,. ,    .    ,„„ ,      LACP  LACPt rTr   „     .„„  r RHO UC WM YK 
d  F5   /   d   (YKr)    =      -—g- -j—.rRHOU-rRHOUC  

dF5/d(YKz,    =     _LACPtrTz   trRHOW,rRHQWC+   rRHOWCWMYK 
LEK. WK 

LACP r 
d  F5   /   d   (YKrr)   =     - -jgj- 

d  F5   /   d   (YKzz)   =     -^^L 

RESIDUALS & JACOBIAN - INLET BOUNDARY 

RESIDUALS & JACOBIAN - AXIS OF SYMMETRY 

RESIDUALS & JACOBIAN - WALL BOUNDARY 

RESIDUALS & JACOBIAN - OUTLET BOUNDARY 

Output code material for point.f90 

Output code material for orj.f 



APPENDIX II: 

Fortran Code for 

RESIDUALS and JACOBIAN Subroutines 

of the Implicit-Compact Solver 

(partial listing of a code created using the 
software tool presented in Appendix I) 



%000000000000000000000000000000000000000000000000000000000000000000000000000000 
%%%%%««^«^^*«««^-S-S-S-6-S%-S-S-S:B-S-S-S%-S%-S-S-6%%%%%%%%%%%%'S-S-S'S-S-S-S-S;S-S-S%%%'o%'5%%%%%%%%%%%%%% 

%% %% 
%% %% 
%% RESIDUALS %% 
%% %% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

SUBROUTINE RESIDUALS (ISTEP) 

USE DimensioningParameters 
USE ProblemParameters 
USE MethodParameters, ONLY : iDSPACE,iDTIME, & 

& TFLOW,DTO,DTI,DT2, & 
& KVFIX, NFIX 
USE Pointers 
USE DiscretizedProblem ,   ONLY : NVAR, NSP, NR, NZ, NODES, NEL, & 

& RI, ZJ, & 
& SF, S, SI, S2, SX, & 
& SD, & 
& EQO, EQ1, CT, F, SB1, & 
& VELinlet 
USE Differentiation 
USE OneStepChemistry_Methane 
USE SimplifiedTransport 
USE Time_IO_Debug, ONLY : WTRES 

IMPLICIT DOUBLE PRECISION (A-H.O-Z) 

double precision dSdt(NVAR_P,NODES_P) 

double precision YK(NSP_P), YKt(NSP_P), YKinlet(NSP_P) 
double precision YKr(NSP_P), YKz(NSP_P), YKrr(NSP_P), YKzz(NSP_P) 

double precision LACP, LACPt, LEK(NSP_P), DK(NSP_P), DKt(NSP_P), & 
! stoichiometric coeffs (# mols produced/destroyed) 

& NUK(NSP_P), & 
! mass coeffs: NUK(k)*WK(k) 

& NUKWK(NSP_P), & 
& WK(NSP_P), SOURCE(NSP_P) 

save isavsd ! should be initialized to zero by compiler 
save igetrsf ! should be initialized to zero by compiler 
save ioutflag 

! upwinding  
double precision CONVRDER(NVAR_P,NODES_P),CONVZDER(NVAR_P,NODES_P) 

double precision CONVECT(NVAR_P) 

! upwinding  
iUPWIND =1    ! 1 = upwind; 2 = 2nd order centered (convective terms) 

timephase = 2*PI*TFLOW/Period 



INITIALIZATION 

call DZERO(F,NEL) 
call DZERO(EQ0,NEL) 
call DZERO(dSdt,NEL) 
call DZERO(CT,NEL) 

.upwinding  
call DZERO(CONVRDER,NEL) 
call DZERO(CONVZDER,NEL) 
call DZERO(CONVECT,NVAR) 

if (iSTEP.eq.O) then 
call DZERO(EQl,NEL) 

endif 

SPATIAL DERIVATIVES 

if (iDSPACE.eq.1) then 
call SPATIAL_LO (S) 

else 
call SPATIAL_CS (S) 

endif 

RESIDUAL - INTERIOR NODES 

DO j = 2 NZ-1 
DO i = 2 NR-1 

ind = (j-1)*NR + i 

r = RI(i) 

PO = AtmPressure 
P2 = S(MvarP,ind) 
P = PO + P2 

P = PO 

U = S(MvarU ,ind) 
W = S(MvarW ,ind) 
T = S(MvarT ,ind) 
YK = S(MvarYK,ind) 

Pr = SD(KderPr ,ind) 
Pz = SD(KderPz ,ind) 
Ur = SD(KderUr ,ind) 
Uz = SD(KderUz ,ind) 
Urr = SD(KderUrr , ind) 
Uzz = SD(KderUzz ,ind) 
Urz = SD(KderUrz ,ind) 
Wr = SD(KderWr ,ind) 



Wz 
Wrr 
Wzz 
Wrz 
Tr 
Tz 
Trr 
Tzz 
YKr 
YKz 
YKrr 
YKzz 

Pt = 
Ut = 
Wt = 
Tt = 
YKt = 

SD(KderWz , 
SD(KderWrr , 
SD(KderWzz , 
SD(KderWrz , 
SD(KderTr , 
SD(KderTz 
SD(KderTrr , 
SD(KderTzz , 
SD(KderYKr , 
SD(KderYKz , 
SD(KderYKrr, 
SD(KderYKzz, 

ind) 
ind) 
ind) 
ind) 
ind) 
ind) 
ind) 
ind) 
ind) 
ind) 
ind) 
ind) 

O.dO 
O.dO 
O.dO 
O.dO 
O.dO 

set to zero here when computing EQO 
set to zero here when computing EQO 
set to zero here when computing EQO 
set to zero here when computing EQO 
set to zero here when computing EQO 

WK  = MolecularWeights 
WM  = MixtureWeight (YK, WK) 
RHO  = P*WM/(RU*T) 
PDYN = P2 
GZ   = GRAV 

CP 
CPt 
LACP 
LACPt 
PRN 
LEK 

DK 
DKt 
UC 
UCr 
wc 
WCz 

NUK 
NUKWK 

!  (nu_0 
sstoich 
Yfuel 
Yox 
Yfuel_F 
Yox_A 
Z 
PHI 
omega 
SOURCE 

q 
HEAT 

= SpecificHeat(T) 
= 0 .do 
= LambdaCp(T) 
= LambdaCp_ddT(T) 
= PrandtlNumber 
= LewisNumbers 

SpecificHeat_ddT(T) 
lambda/Cp 
d(lambda/Cp)/dT 

LACP/(LEK*RHO) 
LACPt/(LEK*RHO)+LACP/(LEK*RHO*T) 
dot_product(DK,YKr) ! correction vel. for mass conservation 
dot_product(DK,YKrr)+dot_product((DKt*Tr),YKr) 
dot_product(DK,YKz) ! correction vel. for mass conservation 
dot_product(DK,YKzz)+dot_product((DKt*Tz),YKz) 

= SignedStoichiometricCoeffs 
= NUK*WK 
Wk_0)/(nu_F * Wk_F) @ stoichiometric conditions 
NUKWK(2)/NUKWK(1) 
YK(1) 
YK(2) 
l.dO    ! mass fraction of fuel in the Fuel Stream 
0.232d0 ! mass fraction of oxydizer in the Air Stream 
Z_mixfrac(sstoich, Yfuel, Yox, Yfuel_F, Yox_A) 
PHI_equivratio (Z, Yfuel_F, Yox_A) 
MolarProductionRate(PHI, RHO, YK, Wk, T) 
(NUKWK/abs(NUK(l))) * omega 
HeatReleasePerMole(PHI) 
q * omega 

density gradients, time derivative 

RHOrP = (Pr*r*RHO*U)/P 



RHOrT = -(r*RHO*Tr*U)/T 
RHOrY =  sum( ((r*RHO*U*WM*YKr)/WK) ) 

RHOr  = RHOrP+RHOrT+RHOrY 

RHOzP = (Pz*r*RHO*W)/P 
RHOzT = -(r*RHO*Tz*W)/T 
RHOzY = sum( ((r*RHO*W*WM*YKz)/WK) ) 

RHOz  = RHOzP+RHOzT+RHOzY 

RHOt  = O.dO ! leave off time terms till later. 

convective terms 

CONVECT(MeqnP) 
CONVECT(MeqnU) 
CONVECT(MeqnW) 
CONVECT(MeqnT) 
CONVECT(MeqnYK) 

(U*RHOr + W*RHOz) * r 
= RHO*(U*Ur   + W*Uz) * r**2 
= RHO*(U*Wr   + W*Wz) * r 
= RHO*(U*Tr   + W*Tz) * r 
= RHO*(U*YKr  + W*YKz) * r 

if (iUPWIND.eq.1 .and. iDSPACE.eq.1) then 
call UPWIND(ind,i,j,r,RHO,CONVRDER,CONVZDER,CONVECT)\ 

endif 

steady part of the residuals 

£ 
S 

EQO(MeqnP ,ind) 

EQ0(MeqnU ,ind) 

EQO(MeqnW ,ind) 

EQ0(MeqnT ,ind) = 

EQO(MeqnYK,ind) 

r*RHOt+RHO*U+r*RHO*Ur+r*RHO*Wz+CONVECT(MeqnP) 

(4*LACP*PRN*U)/3.d0+(2*LACPt*PRN*r*Tr*U)/3.d0 & 
-(4*LACP*PRN*r*Ur)/3.dO+Pr*(r*r) & 
-(4*LACPt*PRN*Tr*Ur*(r*r))/3.dO & 
-(4*LACP*PRN*Urr*(r*r))/3.dO+RHO*Ut*(r*r) & 
-LACPt*PRN*Tz*Uz*(r*r)-LACP*PRN*Uzz*(r*r) & 
-LACPt*PRN*Tz*Wr*(r*r) & 
-(LACP*PRN*Wrz*(r*r))/3.dO & 
+(2*LACPt*PRN*Tr*Wz*(r*r))/3.dO & 
+CONVECT(MeqnU) 

Pz*r-GZ*r*RHO+(2*LACPt*PRN*Tz*U)/3.dO & 
+(2*LACPt*PRN*r*Tz*Ur)/3.dO-(LACP*PRN*r*Urz)/3.dO & 
-(LACP*PRN*Uz)/3.dO-LACPt*PRN*r*Tr*Uz-LACP*PRN*Wr  & 
-LACPt*PRN*r*Tr*Wr-LACP*PRN*r*Wrr & 
+r*RHO*Wt-(4*LACPt*PRN*r*Tz*Wz)/3.dO & 
-(4*LACP*PRN*r*Wzz)/3.dO & 
+CONVECT(MeqnW) 

-((HEAT*r)/CP)-LACP*Tr-LACP*r*Trr+r*RHO*Tt & 
-LACP*r*Tzz & 
-(CPt*LACP*r*(Tr*Tr))/CP-LACPt*r*(Tr*Tr) & 
-(CPt*LACP*r*(Tz*Tz))/CP-LACPt*r*(Tz*Tz) & 
+CONVECT(MeqnT) 

-(r*SOURCE)+RHO*UC*YK+r*RHOr*UC*YK+r*RHO*UCr*YK & 
+r*RHOz*WC*YK+r*RHO*WCz*YK-(LACP*YKr)/LEK & 
-(LACPt*r*Tr*YKr)/LEK+r*RHO*UC*YKr & 



& -(LACP*r*YKrr)/LEK+r*RHO*YKt-(LACPt*r*Tz*YKz)/LEK  & 
& +r*RHO*WC*YKz-(LACP*r*YKzz)/LEK & 
& +CONVECT(MeqnYK) 

ENDDO 
ENDDO 

RESIDUAL - BOUNDARY NODES 

CONDITIONS AT THE INLET: BOUNDARY 1 

j = 1 

DO i = 2 , NR 

ind = (j-1)*NR + i 

r = RI (i) 

PO = AtmPressure 
P2 = S(MvarP,ind) 
P   = PO + P2 

P = PO 

u = S(MvarU ind) 
w = S(MvarW ind) 
T = S(MvarT ind) 
YK = S(MvarYK ind) 

Pz = SD(KderPz , ind) 
Ur = SD(KderUr ,ind) 
Uz = SD(KderUz ,ind) 
Urz = SD(KderUrz ,ind) 
Wr = SD(KderWr ,ind) 
Wz = SD(KderWz ,ind) 
Wrr = SD(KderWrr ,ind) 
Wzz = SD(KderWzz ,ind) 
Tr = SD(KderTr ,ind) 
Tz = SD(KderTz ,ind) 

Wt   = O.dO 
if (iDTIME.gt.l) 

Wt = VELinlet(i)*MODULATION*2*PI/PERIOD*cos(timephase) 

WK   = MolecularWeights 
WM   = MixtureWeight (YK, WK) 
RHO  = P*WM/(RU*T) 
PDYN = P2 
GZ   = GRAV 

LACP  = LambdaCp(T)     ! lambda/Cp 
LACPt = LambdaCp_ddT(T) ! d(lambda/Cp)/dT 
PRN   = PrandtlNumber 

Winlet  = SB1(MvarW ,i) 



I 

I ; 

I 

Tinlet  = SB1(MvarT ,i) 
YKinlet = SB1(MvarYK,i) 

EQO(MeqnP ,ind) = Pz*r-GZ*r*RHO+(2*LACPt*PRN*Tz*U)/3.do               & 
& +(2*LACPt*PRN*r*Tz*Ur)/3.d0-(LACP*PRN*r*Urz)/3.dO  & 
& -(LACP*PRN*Uz)/3.dO-LACPt*PRN*r*Tr*Uz-LACP*PRN*Wr  & 
& -LACPt*PRN*r*Tr*Wr+r*RHO*U*Wr-LACP*PRN*r*Wrr       & 
Sc +r*RHO+Wt-(4*LACPt*PRN*r*Tz*Wz)/3.dO+r*RHO*W*Wz    & 
& -(4*LACP*PRN*r*Wzz)/3.d0 

EQO(MeqnU ,ind) = U 
EQO(MeqnW ,ind) = W-Winlet 
EQO(MeqnT ,ind) = T-Tinlet 
EQO(MeqnYK,ind) = YK-YKinlet 

ENDDO 

..Special treatment (for pressure BC) at symmetry-inlet corner pt 
i   =1 
ind = 1 
U    = S(MvarU , ind) 
W    = S(MvarW , ind) 
T    = S(MvarT , ind) 
YK   = S(MvarYK , ind) 
Pr   = SD(KderPr , ind) 
Winlet  = SB1(MvarW ,i) 
Tinlet SB1(MvarT ,i) 
YKinlet = SB1(MvarYK,i) 
EQO(MeqnP ,ind) = Pr 
EQO(MeqnU , ind) = U 
EQO(MeqnW , ind) = W-Winlet 
EQO(MeqnT , ind) = T-Tinlet 
EQO(MeqnYf C, ind) = YK-YKinlet 

CUT 

TIME-DERIVATIVES 

iDTIME=0 : STEADY STATE - NO TIME DERIVATIVE TERMS 

IF (iDTIME.eq.0) THEN 

do ind = 1,nodes 
do keq = l.nvar 

F(keq,ind) = EQO(keq,ind) 
enddo 
enddo 

goto 999 



iDTIME=l : BACKWARD EULER DISCRETIZATION IN PSEUDO-TIME 

ELSEIF (iDTIME.eq.1) THEN 

!        INTERIOR POINTS 

do j=2,NZ-l 
do i=2,NR-l 

ind = (j-1)*NR+i 

r   = RI(i) 

PO = AtmPressure 
P2 = S(MvarP,ind) 
P = PO + P2 

P = PO 

T  = S(MvarT  ,ind) 
YK  = S(MvarYK ,ind) 

WK  = MolecularWeights 
WM  = MixtureWeight (YK, WK) 
RHO = P*WM/(RU*T) 

CT(2,ind) = RHO * r**2 
CT(3,ind) = RHO * r 
CT(4,ind) = RHO * r 
do k = 1,NSP 

CT(4+k,ind) = RHO * r 
enddo 

Pt    = (S(MvarP ,ind)-SI(MvarP ,ind))/DTO 
Tt    = (S(MvarT ,ind)-SI(MvarT ,ind))/DTO 
YKt   = (S(MvarYK,ind)-SI(MvarYK,ind))/DTO 
RHOtP =  (Pt*r*RHO)/P 
RHOtT = -(r*RHO*Tt)/T 
RHOtY = sum( ((r*RHO*WM*YKt)/WK) ) 
RHOt  = RHOtP ! +RHOtT+RHOtY 
F(MvarP,ind) = RHOt + EQO(MvarP,ind) 
do k = 2,NVAR 

dSdt(k,ind) = (S(k,ind)-SI(k,ind))/DTO 
F(k,ind) = CT(k,ind) * dSdt(k,ind) + EQO(k,ind) 

enddo 

enddo 
enddo 

CUT 



SOME VARIABLES MAY BE FIXED 

999   continue 

if (KVFIX.gt.O) then 
do ind=l,NODES 

do k=l,NVAR 
if (NFIX(k).eq.1) then 

F (k, ind) =S (k, ind) -SX (k, ind) 
EQ0(k,ind) = O.dO 

endif 
enddo 

enddo 
endif 

monitor norms of steady and unsteady residuals 

call NORM2(NEL,EQO,eqOnrm) 
call NORM2(NEL,F,  fnrm) 
dnel=sqrt(dble(NEL)) 
fnrm=fnrm/dnel 
eqOnrm=eqOnrm/dnel 

if (iSTEP.ne.-1) then 
write ( 6,*) ' @@@ eqOnrm = ',eqOnrm 
write ( 6,*) '@@@   fnrm = ',  fnrm 
write (16,*) '@@@ eqOnrm = ',eqOnrm 
write (16,*) '@@@   fnrm = ',  fnrm 

endif 

RETURN 
END 



%% 
%% 

%% 
%% 
%% 

JACOBIAN 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

SUBROUTINE JACOBIAN 

USE DimensioningParameters 
USE ProblemParameters 
USE MethodParameters, ONLY 

USE Pointers 
USE DiscretizedProblem 

& 
& 

& 
& 

iDSPACE,iDTIME, 
TFLOW,DTO,DT1,DT2, 
iMATVEC, 
KVFIX, NFIX 

ONLY : NVAR, NSP, NR, NZ, NODES, NEL, 
NDRTP, 
RI, ZJ, 
SF, S, SI, S2, SX, 
SD, 
DJ, DQ, CTDJ, F, 
VELinlet 

USE Differentiation 
USE OneStepChemistry_Methane 
USE SimplifiedTransport 
USE Time_IO_Debug, ONLY : CPUREST, SECONDM 

IMPLICIT DOUBLE PRECISION (A-H,0-Z) 

double precision YK(NSP_P), YKt(NSP_P), YKinlet(NSP_P) 
double precision YKr(NSP_P), YKz(NSP_P), YKrr(NSP_P), YKzz(NSP_P) 

double precision LACP, LACPt, LACPtt, LEK(NSP_P), DK(NSP_P), DKt(NSP_P) 
! stoichiometric coeffs (# mols produced/destroyed) 

& NUK(NSP_P), 
! mass coeffs: NUK(k)*WK(k) 

& NUKWK(NSP_P), 
& WK(NSP_P), SOURCE(NSP_P), SOURCEp(NSP_P), 
& SOURCEt(NSP_P), SOURCEy(NSP_P,NSP_P), HEATy(NSP_P), 
& omegay(NSP_P) 

double precision DSPERT(NODES_P), SHOLD(NVAR_P,NODES_P) 
double precision FO(NVAR_P,NODES_P) 

iNumericalDJ =1   ! 1 - numerical, 0 - analytical 

timephase = 2*PI*TFL0W/Period 

& 
& 
& 
& 
s 
s 

INITIALIZE 

NDJ = NVAR_P*NVAR_P*NODES_P  ! size of array DJ 
NDQ = NVAR_P*LDQ_P*NODES_P   ! size of array DQ 

call DZERO(DJ,NDJ) 
call DZERO(DJN,NDJ) ! numerical DJ 



call DZERO(DQ,NDQ) 
call DZERO(CTDJ,NEL) 

if (iDTIME.eq.0) then 
! NO TIME DERIVATIVES: steady-state solve 

elseif (iDTIME.eq.1) then 
ddt=l.D0/DT0       ! pseudo-time Implicit Euler 

elseif (iDTIME.eq.2) then 
ddt=l.D0/DT0       ! time-dependent Implicit Euler 

elseif (iDTIME.eq.3) then 
ddt=l.D0/DT0       ! time-dependent Crank-Nicolson 

elseif (iDTIME.eq.4) then 
ddt=3.DO/(2.d0*DT0)! time-dependent 2nd order BDF 

else 
write(*,*) 'STOP: other time discrets. not yet implemented1 

stop 
endif 

NUMERICAL DJ 

IF (iNumericalDJ.eq.l) THEN 

call RESIDUALS (-1) 

F0 = F     ! save initial residual 
SHOLD = S  ! save current solution S 

DO kvar = 1,NVAR 

DO j =2, NZ-1 
DO i = 2, NR-1 

ind = (j-1)*NR+i 
tmp = S(kvar,ind) 
DSPERT(ind) = tmp*l.d-8 + l.d-8 
S(kvar,ind) = tmp + DSPERT(ind) 

ENDDO 
ENDDO 

call RESIDUALS (-1)   ! compute perturbed residual 

DO j = 2, NZ-1 
DO i = 2, NR-1 
ind = (j-1)*NR+i 
DO keqn = 1,NVAR 

DJ(keqn,kvar,ind)=(F(keqn,ind)-F0(keqn,ind))/DSPERT(ind) 
ENDDO 
ENDDO 
ENDDO 

S = SHOLD 

ENDDO 
call RESIDUALS (-1) 

ENDIF 



SPATIAL DERIVATIVES 

if (iDSPACE.eq.1) then  ! LO method 
call SPATIAL_LO (S) 

else 
call SPATIAL_CS (S) 

endif 

JACOBIAN INTERIOR NODES 

DO j = 2, NZ-1 
DO i = 2, NR-1 

ind = (j-1)*NR + i 

r   = RI(i) 

PO = AtmPressure 
P2 = S(MvarP,ind) 
P   = PO + P2 

P = PO 

u = S(MvarU  , ind) 
w = S(MvarW ind) 
T = S(MvarT ind) 
YK = SfMvarYK , ind) 

Pr  = SD(KderPr ,ind) 
Pz  = SD(KderPz ,ind) 
Ur  = SD(KderUr , ind) 
Uz  = SD(KderUz , ind) 
Urr = SD(KderUrr ,ind) 
Uzz = SD(KderUzz ,ind) 
Urz = SD(KderUrz ,ind) 
Wr  = SDfKderWr ,ind) 
Wz  = SD(KderWz ,ind) 
Wrr = SD(KderWrr ,ind) 
Wzz = SD(KderWzz ,ind) 
Wrz = SD(KderWrz , ind) 
Tr SD(KderTr ,ind) 
Tz  = SD(KderTz , ind) 
Trr = SD(KderTrr , ind) 
Tzz = SD(KderTzz ,ind) 
YKr = SD(KderYKr ,ind) 
YKz = SD(KderYKz , ind) 
YKrr = SD(KderYKri ,ind) 
YKzz = SD(KderYKzz , ind) 

time derivatives 
Pt  = O.dO 
Ut  = O.dO 



Wt = O.dO 
Tt = O.dO 
YKt = O.dO 
IF (iDTIME.ge.l 

ddt*(S(MvarP 
ddt*(S(MvarU 
ddt*(S(MvarW 
ddt*(S(MvarT 

.and. iDTIME.le.3) THEN 
,ind)-SI(MvarP ,ind) 
,ind)-SI(MvarU ,ind) 
,ind)-SI(MvarW ,ind) 
,ind)-SI(MvarT ,ind) 

ps-time IE, IE, CN 
Pt = 
Ut = 
Wt = 
Tt  = 
YKt = ddt*(S(MvarYK,ind)-SI(MvarYK,ind) 

ELSEIF (iDTIME.eq.4) THEN 
Pt  = 0.5d0/DT0*(3.dO*S(MvarP 

+l.d0*S2(MvarP ,ind)) 
Ut  = 0.5d0/DT0*(3.dO*S(MvarU 

+l.dO*S2(MvarU  ,ind) 
Wt  = 0.5d0/DT0*(3.dO*S(MvarW 

+1.dO*S2(MvarW  ,ind) 
0.5d0/DT0*(3.dO*S(MvarT 
+l.dO*S2(MvarT  ,ind)) 

0.5d0/DT0*(3.dO*S(MvarYK,ind 
+1.d0*S2(MvarYK ,ind)) 

Tt 

YKt 

! BDF2 
ind) -4 dO*Sl(MvarP ind) 

ind) -4 dO*Sl(MvarU ind) 

ind) -4 dO*Sl(MvarW ind) 

ind) -4 .dO*Sl(MvarT , ind) 

•4.dO*Sl(MvarYK,ind) 

END IF 

WK  = MolecularWeights 
WM  = MixtureWeight (YK, 
RHO  = P*WM/(RU*T) 
PDYN = P2 
GZ   = GRAV 

WK) 

CP = SpecificHeat(T) 
CPt = O.dO 
CPtt = O.dO 
LACP = LambdaCp(T) 
LACPt = LambdaCp_ddT(T) 
LACPtt = LambdaCp_d2dT2(T) 
PRN = PrandtlNumber 
LEK = LewisNumbers 

SpecificHeat_ddT(T) 
SpecificHeat_d2dT2(T) 
lambda/Cp 
d(lambda/Cp)/dT 
d2(lambda/Cp)/dT2 

DK = LACP/(LEK*RHO) 
DKt = LACPt/(LEK*RHO)+LACP/(LEK*RHO*T) 
UC = dot_product(DK,YKr)  ! correction vel. for mass conservation 
UCr = dot_product(DK,YKrr)+dot_product((DKt*Tr),YKr) 
WC = dot_product(DK,YKz)  ! correction vel. for mass conservation 
WCz = dot_product(DK,YKzz)+dot_product((DKt*Tz),YKz) 

NUK    = SignedStoichiometricCoeffs 
NUKWK   = NUK*WK 

! (nu_0 * Wk_0)/(nu_F * Wk_F) @ stoichiometric conditions 
sstoich = NUKWK(2)/NUKWK(1) 
Yfuel   = YK(1) 
Yox     = YK(2) 
Yfuel_F = l.dO    ! mass fraction of fuel in the Fuel Stream 
Yox_A   = 0.232d0 ! mass fraction of oxydizer in the Air Stream 
Z       = Z_mixfrac(sstoich, Yfuel, Yox, Yfuel_F, Yox_A) 
PHI     = PHI_equivratio (Z, Yfuel_F, Yox_A) 
omega   = MolarProductionRate(PHI, RHO, YK, Wk, T) 
omegap  = MolarProductionRate_ddP(PHI, RHO, YK, Wk, T) 
omegat  = MolarProductionRate_ddT(PHI, RHO, YK, Wk, T) 



omegay  = MolarProductionRate_ddYK(PHI, RHO, YK, Wk, T) 
SOURCE  = (NUKWK/abs(NUK(l))) * omega 
SOURCEp = (NUKWK/abs(NUK(l))) * omegap 
SOURCEt = (NUKWK/abs(NUK(l))) * omegat 
! outer product of NUWK * (omegay)*T 
SOURCEy = spread((NUKWK/abs(NUK(l))),2,NSP_P )*spread(omegay,1,NSP_P) 
q      = HeatReleasePerMole(PHI) 
HEAT    = q * omega 
HEATp  = q * omegap 
HEATt   = q * omegat 
HEATy   = q * omegay 

LOCAL COMPONENTS MAIN BLOCK DIAGONAL 

IF (iNumericalDJ.ne.1) THEN 

.Analytical DJ 

DJ(MeqnP ,MvarP ind) 

& 

& 
& 

& 

S 
& 
& 
& 
& 
s 

s 
& 
& 
& 

s 

& 
& 
& 
& 
s 
& 

DJ(MeqnP ,MvarU ,ind) 

DJ(MeqnP ,MvarW ,ind) 

DJfMeqnP ,MvarT ,ind) 

DJ(MeqnP ,MvarYK,ind) = 

DJ(MeqnU ,MvarP ,ind) 

DJ(MeqnU ,MvarU , ind) 

DJ(MeqnU ,MvarW ,ind) 
DJ(MeqnU ,MvarT ,ind) 

-((r*RHO*Tt)/(P*T))+(RHO*U)/P 
-(r*RHO*Tr*U)/(P*T)+(r*RHO*Ur)/P 
-(r*RHO*Tz*W)/(P*T)+(r*RHO*Wz)/P 
+sum( ((r*RHO*U*WM*YKr)/(P*WK)) ) 
+sum( ((r*RHO*WM*YKt)/(P*WK)) ) 
+sum( ((r*RHO*W*WM*YKz)/(P*WK)) ) 

RHO+(Pr*r*RHO)/P-(r*RHO*Tr)/T 
+sum( ((r*RHO*WM*YKr)/WK) ) 
(Pz*r*RHO)/P-(r*RHO*Tz)/T 
+sum( ((r*RHO*WM*YKz)/WK) ) 
-((Pt*r*RHO)/(P*T))+(2*r*RHO*Tt)/T**2 
-(RHO*U)/T-(Pr*r*RHO*U)/(P*T) 
+(2*r*RH0*Tr*U)/T**2-(r*RHO*Ur)/T 
-(Pz*r*RHO*W)/(P*T)+(2*r*RH0*Tz*W)/T**2 
-(r*RH0*Wz)/T 
-sum( ((r*RHO*U*WM*YKr)/(T*WK)) ) 
-sum( ((r*RHO*WM*YKt)/(T*WK)) ) 
-sum( ((r*RHO*W*WM*YKz)/(T*WK)) ) 
-((Pt*r*RHO*WM)/(P*WK))+(r*RHO*Tt*WM)/(T*WK) 
-(RHO*U*WM)/WK-(Pr*r*RHO*U*WM)/(P*WK) 
+(r*RHO*Tr*U*WM)/(T*WK)-(r*RHO*Ur*WM)/WK 
-(Pz*r*RHO*W*WM)/(P*WK) 
+(r*RHO*Tz*W*WM)/(T*WK)-(r*RHO*WM*Wz)/WK 
-(2*r*RH0*U*YKr*(WM*WM))/WK**2 
-(2*r*RH0*YKt*(WM*WM))/WK**2 
-(2*r*RH0*W*YKz*(WM*WM))/WK**2 

(RHO*U*Ur*(r*r))/P+(RHO*Ut*(r*r))/P 
+(RHO*Uz*W*(r*r))/P 
(4*LACP*PRN)/3.d0+(2*LACPt*PRN*r*Tr)/3.do 
+RHO*Ur*(r*r) 

RHO*Uz*(r*r) 
(4*LACPt*PRN*U)/3.dO 
+(2*LACPtt*PRN*r*Tr*U)/3.dO 
-(4*LACPt*PRN*r*Ur)/3.dO 
-(4*LACPtt*PRN*Tr*Ur*(r*r))/3.dO 
-(RHO*U*Ur*(r*r))/T 
-(4*LACPt*PRN*Urr*(r*r))/3.do 
-(RHO*Ut*(r*r))/T-LACPtt*PRN*Tz*Uz*(r*r) 

& 
& 
& 
& 

s 
& 
s 
& 
& 
& 
& 

& 
& 
& 
& 
& 
& 
& 



& -LACPt*PRN*Uzz*(r*r)-(RHO*Uz*W*(r*r))/T     & 
& -LACPtt*PRN*Tz*Wr*(r*r)                      & 
& -(LACPt*PRN*Wrz*(r*r))/3.do                  & 
& +(2*LACPtt*PRN*Tr*Wz*(r*r))/3.d0 

DJ(MeqnU ,MvarYK,ind) = -((RHO*U*Ur*WM*(r*r))/WK)                    & 
& -(RHO*Ut*WM*(r*r))/WK-(RHO*Uz*W*WM*(r*r))/WK 

DJ(MeqnW ,MvarP ,ind) 

& 
& 
S 
S 

DJ(MeqnW 
DJ(MeqnW 
DJ(MeqnW 

,MvarU 
,MvarW 
,MvarT 

ind) 
ind) 
ind) 

DJ(MeqnW ,MvarYK,ind) 

-((GZ*r*RHO)/P)+(r*RHO*U*Wr)/P+(r*RHO*Wt)/P 
+(r*RHO*W*Wz)/P 
(2*LACPt*PRN*Tz)/3.dO+r*RHO*Wr 
r*RHO*Wz 
(GZ*r*RHO)/T+(2*LACPtt*PRN*Tz*U)/3.do 
+(2*LACPtt*PRN*r*Tz*Ur)/3.dO 
-(LACPt*PRN*r*Urz)/3.dO-(LACPt*PRN*Uz)/3.dO 
-LACPtt*PRN*r*Tr*Uz-LACPt*PRN*Wr 
-LACPtt*PRN*r*Tr*Wr-(r*RHO*U*Wr)/T 
-LACPt*PRN*r*Wrr-(r*RHO*Wt)/T 
-(4*LACPtt*PRN*r*Tz*Wz)/3.dO-(r*RHO*W*Wz)/T 
-(4*LACPt*PRN*r*Wzz)/3.dO 
(GZ*r*RHO*WM)/WK-(r*RHO*U*WM*Wr)/WK 
-(r*RHO*WM*Wt)/WK-(r*RHO*W*WM*Wz)/WK 

S 
& 

& 
s, 
S 
& 

& 
& 

& 

& 
& 
& 

s 

& 
s 

s 
& 
& 
& 
& 

DJ(MeqnT 
DJ(MeqnT 
DJ(MeqnT 
DJ(MeqnT 

,MvarP 
,MvarU 
,MvarW 
,MvarT 

ind) 
ind) 
ind) 
ind) 

DJ(MeqnT ,MvarYK,ind) 

DJ(MeqnYK,MvarP ,ind) = 

DJ(MeqnYK,MvarU ,ind) 
DJ(MeqnYK,MvarW ,ind) 
DJ(MeqnYK,MvarT ,ind) 

(r*RHO*Tt)/P+(r*RHO*Tr*U)/P+(r*RHO*Tz*W)/P 
r*RHO*Tr 
r*RHO*Tz 
(CPt*HEAT*r)/CP**2-LACPt*Tr-LACPt*r*Trr & 
-(r*RHO*Tt)/T-LACPt*r*Tzz-(r*RHO*Tr*U)/T & 
-(r*RHO*Tz*W)/T-(CPtt*LACP*r*(Tr*Tr))/CP & 
-(CPt*LACPt*r*(Tr*Tr))/CP-LACPtt*r*(Tr*Tr) & 
+(LACP*r*(CPt*CPt)*(Tr*Tr))/CP**2 & 
-(CPtt*LACP*r*(Tz*Tz))/CP & 
- (CPt*LACPt*r*(Tz*Tz))/CP-LACPtt*r*(Tz*Tz) & 
+(LACP*r*(CPt*CPt)*(Tz*Tz))/CP**2+HEATt 
-((r*RHO*Tt*WM)/WK)-(r*RHO*Tr*U*WM)/WK & 
-(r*RHO*Tz*W*WM)/WK+HEATy 

(RHO*UC*YK)/P-(r*RHO*Tr*UC*YK)/(P*T) & 
+(r*RHO*UCr*YK)/P-(r*RHO*Tz*WC*YK)/(P*T) & 
+(r*RHO*WCz*YK)/P+(r*RHO*U*YKr)/P & 
+(r*RHO*UC*YKr)/P & 
+ (r*RHO*UC*WM*YK*YKr)/(P*WK) + (r*RHO*YKt)/P & 
+(r*RHO*W*YKz)/P+(r*RHO*WC*YKz)/P & 
+(r*RHO*WC*WM*YK*YKz)/(P*WK) 

r*RHO*YKr 
r*RHO*YKz 
-((RHO*UC*YK)/T)-(Pr*r*RHO*UC*YK)/(P*T) & 
+(2*r*RHO*Tr*UC*YK)/T**2-(r*RHO*UCr*YK)/T & 
- (Pz*r*RHO*WC*YK)/(P*T) & 
+ (2*r*RHO*Tz*WC*YK)/T**2-(r*RHO*WCz*YK)/T & 
-(LACPt*YKr)/LEK-(LACPtt*r*Tr*YKr)/LEK & 
-(r*RHO*U*YKr)/T-(r*RHO*UC*YKr)/T & 
- (r*RHO*UC*WM*YK*YKr)/(T*WK) & 
-(LACPt*r*YKrr)/LEK-(r*RHO*YKt)/T & 
-(LACPtt*r*Tz*YKz)/LEK-(r*RHO*W*YKz)/T & 
-(r*RHO*WC*YKz)/T & 
- (r*RHO*WC*WM*YK*YKz)/(T*WK) & 
-(LACPt*r*YKzz)/LEK 



FORALL (k=l:NSP) 
roughly correct: dF(YK)/dYK is full since F(YK) contains RHO, a fn of all YK 

DJ(MeqnYK(k),MvarYK(k),ind) = RHO*UC+(Pr*r*RHO*UC)/P-(r*RHO*Tr*UC)/T & 
& +r*RHO*UCr+(Pz*r*RHO*WC)/P & 
& -(r*RHO*Tz*WC)/T+r*RHO*WCz & 
& -(RHO*UC*WM*YK(k))/WK(k) & 
& -(Pr*r*RHO*UC*WM*YK(k))/(P*WK(k)) & 
& + (r*RHO*Tr*UC*WM*YK(k))/(T+WK(k)) & 
& -(r*RHO*UCr*WM*YK(k))/WK(k) & 
& -(Pz*r*RHO*WC*WM*YK(k))/(P*WK(k)) & 
& +(r*RHO*Tz*WC*WM*YK(k))/(T*WK(k)) & 
& -(r*RHO*WCz*WM*YK(k))/WK(k) & 
& -(r*RHO*U*WM*YKr(k))/WK(k) & 
& -(r*RHO*WM*YKt(k))/WK(k) & 
Sc - (r*RHO*W*WM*YKz (k) )/WK(k) & 
& - (2*r*RH0*UC*YK(k)*YKr(k) & 
& *(WM*WM))/WK(k)**2 & 
& -(2*r*RH0*WC*YK(k)*YKz(k) & 
& *(WM*WM))/WK(k)**2 

END FORALL 
DJ(MeqnYK ,MvarYK ,ind) = DJ(MeqnYK ,MvarYK ,ind) + SOURCEy 
! N.B. SOURCEy is a matrix 

IF (iDTIME.eq.3) THEN  ! Crank-Nicolson only 

DO k2 = 1, NVAR 
DO kl = 1, NVAR 

DJ(kl,k2,ind) = 0.5dO*DJ(kl,k2,ind) 
ENDDO 
ENDDO 

END IF 

ADD TIME DERIVATIVE TERMS TO LOCAL COMPONENTS (DIAGONAL ONLY) 

IF (iDTIME.ne.0) THEN  ! omit time derivatives for steady problem 

DJ(MeqnP ,MvarP ,ind) = DJ(MeqnP ,MvarP ,ind) + (ddt*r*RHO)/P 
IF (iDTIME.ne.1) THEN 
DJ(MeqnP ,MvarT ,ind) = DJ(MeqnP ,MvarT ,ind) -((ddt*r*RHO)/T) 
DJ(MeqnP ,MvarYK,ind) = DJ(MeqnP ,MvarYK,ind) + (ddt*r*RHO*WM)/WK 
END IF 
DJ(MeqnU ,MvarU ,ind) = DJ(MeqnU  ,MvarU  ,ind) + ddt*RHO*(r*r) 
DJ(MeqnW ,MvarW ,ind) = DJ(MeqnW  ,MvarW  ,ind) + ddt*r*RHO 
DJ(MeqnT ,MvarT ,ind) = DJ(MeqnT  ,MvarT  ,ind) + ddt*r*RHO 
FORALL (k=l:NSP) 
DJ(MeqnYK(k),MvarYK(k),ind) = DJ(MeqnYK(k),MvarYK(k),ind) & 

& + ddt*r*RHO 
END FORALL 

END IF 

! END Analytical DJ 

END IF 

! SPATIAL COMPONENTS 



DQ(MeqnP ,KderPr ,ind) 
DQ(MeqnP ,KderPz ,ind) 
DQ(MeqnP ,KderUr ,ind) 
DQ(MeqnP ,KderWz ,ind) 
DQ(MeqnP ,KderTr ,ind) 
DQ(MeqnP ,KderTz ,ind) 
DQ(MeqnP ,KderYKr ,ind) 
DQ(MeqnP ,KderYKz ,ind) 

DQ(MeqnU ,KderPr ,ind) 
DQ(MeqnU 

& 
DQ(MeqnU 

,KderUr ,ind) 

,KderUz ,ind) 
DQ(MeqnU ,KderUrr ,ind) 
DQ(MeqnU ,KderUzz ,ind) 
DQ(MeqnU ,KderWr ,ind) 
DQ(MeqnU ,KderWz ,ind) 
DQ(MeqnU ,KderWrz ,ind) 
DQ(MeqnU 

& 
,KderTr ,ind) 

& 
DQ(MeqnU ,KderTz ,ind) 

DQ(MeqnW ,KderPz ,ind) 
DQ(MeqnW ,KderUr , ind) 
DQ(MeqnW ,KderUz , ind) 
DQ(MeqnW ,KderUrz ,ind) 
DQ(MeqnW ,KderWr ,ind) 
DQ(MeqnW ,KderWz ,ind) 
DQ(MeqnW ,KderWrr ,ind) 
DQ(MeqnW ,KderWzz ,ind) 
DQ(MeqnW ,KderTr ,ind) 
DQ(MeqnW 

& 
& 

DQ(MeqnT 
& 

DQ(MeqnT 

,KderTz ,ind) 

,KderTr ,ind) 

,KderTz ,ind) 
DQ(MeqnT ,KderTrr ,ind) 
DQ(MeqnT ,KderTzz ,ind) 

(r*RHO*U)/P 
(r*RHO*W)/P 
r*RHO 
r*RHO 
-((r*RHO*U)/T) 
-((r*RHO*W)/T) 
(r*RHO*U*WM)/WK 
(r*RHO*W*WM)/WK 

r*r 
(-4*LACP*PRN*r)/3.dO 
-(4*LACPt*PRN*Tr*(r*r))/3.dO+RHO*U*(r*r) 
-(LACPt*PRN*Tz*(r*r))+RHO*W*(r*r) 
(-4*LACP*PRN*(r*r))/3.dO 
-(LACP*PRN*(r*r)) 
-(LACPt*PRN*Tz*(r*r) ) 
(2*LACPt*PRN*Tr*(r*r))/3.dO 
-(LACP*PRN*(r*r))/3.dO 
(2*LACPt*PRN*r*U)/3.dO 
-(4*LACPt*PRN*Ur*(r*r))/3.dO 
+(2*LACPt*PRN*Wz*(r*r))/3.dO 
-(LACPt*PRN*Uz*(r*r))-LACPt*PRN*Wr*(r*r) 

(2*LACPt*PRN*r*Tz)/3.d0 
-(LACP*PRN)/3.dO-LACPt*PRN*r*Tr 
-(LACP*PRN*r)/3.d0 
-(LACP*PRN)-LACPt*PRN*r*Tr+r*RHO*U 
(-4*LACPt*PRN*r*Tz)/3.dO+r*RHO*W 
-(LACP*PRN*r) 
(-4*LACP*PRN*r)/3.dO 
-(LACPt*PRN*r*Uz)-LACPt*PRN*r*Wr 
(2*LACPt*PRN*U)/3.d0 
+(2*LACPt*PRN*r*Ur)/3.dO 
-(4*LACPt*PRN*r*Wz)/3.dO 

-LACP-(2*CPt*LACP*r*Tr)/CP-2*LACPt*r*Tr 
+r*RHO*U 
(-2*CPt*LACP*r*Tz)/CP-2*LACPt*r*Tz+r*RHO*W 
-(LACP+r) 
-(LACP*r) 

& 

DQ(MeqnYK,KderPr ,ind) 
DQ(MeqnYK,KderPz ,ind) 
DQ(MeqnYK,KderTr ,ind) 
DQ(MeqnYK,KderTz ,ind) 
FORALL (k=l:NSP) 

roughly correct: dF(YK)/dYK is 
DQ(MeqnYK(k),KderYKr(k) 

(r*RHO*UC*YK)/P 
(r*RHO*WC*YK)/P 
- ( (r*RHO*UC*YK)/T)-(LACPt*r*YKr)/LEK 
-((r*RHO*WC*YK)/T)-(LACPt*r*YKz)/LEK 

full since F(YK) contains RHO, a fn of all YK 
,ind) = -(LACP/LEK(k))-(LACPt*r*Tr)/LEK(k) 

& +r*RHO*U+r*RHO*UC 
& +(r*RHO*UC*WM*YK(k))/WK(k) 

DQ(MeqnYK(k),KderYKz(k) ,ind) = -((LACPt*r*Tz)/LEK(k))+r*RHO*W 
& +r*RHO*WC+(r*RHO*WC*WM*YK(k))/WK(k) 

DQ(MeqnYK(k),KderYKrr(k),ind) = -((LACP*r)/LEK(k)) 
DQ(MeqnYK(k),KderYKzz(k),ind) = -((LACP*r)/LEK(k)) 
END FORALL 



IF (iDTIME.eq.3) THEN  ! Crank-Nicolson only 

DO k2 = 1, NVAR*NDRTP 
DO kl = 1, NVAR 

DQ(kl,k2,ind) = 0.5dO*DQ(kl,k2,ind) 
ENDDO 
ENDDO 

END IF 

ENDDO 
ENDDO 

JACOBIAN - BOUNDARY NODES 

CONDITIONS AT THE INLET: BOUNDARY 1 

j = 1 

DO i = 2, NR 

ind = (j-1)*NR + i 

r   = RI (i) 

PO = AtmPressure 
P2 = S(MvarP ,ind) 
P = PO + P2 
P   = PO 

u = S (MvarU ,ind) 
w = S (MvarW ,ind) 
T = S(MvarT ,ind) 
YK = S(MvarYK,ind) 

Pr = SD(KderPr  ,ind) 
Pz = SDfKderPz  ,ind) 
Ur = SD(KderUr ind) 
Uz = SD(KderUz ind) 
Urr = SD(KderUrr ind) 
Uzz = SD(KderUzz ind) 
Urz = SD(KderUrz ind) 
Wr = SD(KderWr ind) 
Wz = SD(KderWz ind) 
Wrr = SD(KderWrr ind) 
Wzz = SD(KderWzz ind) 
Wrz = SD(KderWrz ind) 
Tr = SD(KderTr ind) 
Tz = SD(KderTz ind) 
Trr = SD(KderTrr ind) 
Tzz = SD(KderTzz ind) 



time derivatives 
Wt   = O.dO 
if (iDTIME.gt.l) 

&      Wt = VELinlet(i)*MODULATION*2*PI/PERIOD*cos(timephase) 

WK   = MolecularWeights 
WM   = MixtureWeight (YK, WK) 
RHO  = P*MW/(RU*T) 
PDYN = P2 
GZ   = GRAV 

CP = SpecificHeat(T) 
CPt = O.dO 
CPtt = O.dO 
LACP = LambdaCp(T) 
LACPt = LambdaCp_ddT(T) 
LACPtt = LambdaCp_d2dT2(T) 
PRN = PrandtlNumber 

SpecificHeat_ddT(T) 
SpecificHeat_d2dT2(T) 
lambda/Cp 
d(lambda/Cp)/dT 
d2(lambda/Cp)/dT2 

s 

& 
& 
& 
& 

s 

DJ(MeqnP ,MvarP ,ind) = 

DJ(MeqnP ,MvarU ,ind) = 
DJ(MeqnP ,MvarW ,ind) = 
! from time derivative 
IF (iDTIME.gt.l) 

DJ(MeqnP ,MvarW ,ind 

DJ(MeqnP ,MvarT ,ind) = 

DJ(MeqnP ,MvarYK,ind) 

-((GZ*r*RHO)/P)+(r*RHO*U*Wr)/P+(r*RHO*Wt)/P & 
+(r*RHO*W*Wz)/P 
(2*LACPt*PRN*Tz)/3.dO+r*RHO*Wr 
r*RHO*Wz 

& 
= DJ(MeqnP ,MvarW ,ind) & 

+(r*RHO*ddt) 
(GZ*r*RHO)/T+(2*LACPtt*PRN*Tz*U)/3.d0 & 
+(2*LACPtt*PRN*r*Tz*Ur)/3.do & 
-(LACPt*PRN*r*Urz)/3.dO-(LACPt*PRN*Uz)/3.d0 & 
-LACPtt*PRN*r*Tr*Uz-LACPt*PRN*Wr & 
-LACPtt*PRN*r*Tr*Wr-(r*RHO*U*Wr)/T & 
-LACPt*PRN*r*Wrr-(r*RHO*Wt)/T & 
-(4*LACPtt*PRN*r*Tz*Wz)/3.dO-(r*RHO*W*Wz)/T & 
-(4*LACPt*PRN*r*Wzz)/3.do 
(GZ*r*RHO*WM)/WK-(r*RHO*U*WM*Wr)/WK & 
-(r*RHO*WM*Wt)/WK-(r*RHO*W*WM*Wz)/WK 

DJ(MeqnU ,MvarU ,ind) = 1 

DJ(MeqnW ,MvarW ,ind) = 1 

DJ(MeqnT ,MvarT ,ind) = 1 

FORALL (k=l:NSP) 
DJ(MeqnYK(k),MvarYK(k),ind) 
END FORALL 

= 1 

DQ(MeqnP ,KderPz , ind) 
DQ(MeqnP ,KderUr , ind) 
DQ(MeqnP ,KderUz ,ind) 
DQ(MeqnP ,KderUrz , ind) 
DQ(MeqnP ,KderWr , ind) 
DQ(MeqnP ,KderWz , ind) 
DQ(MeqnP ,KderWrr ,ind) 
DQ(MeqnP ,KderWzz ,ind) 
DQ(MeqnP ,KderTr ,ind) 

(2*LACPt*PRN*r*Tz) /3.dO 
-(LACP*PRN)/3.dO-LACPt*PRN*r*Tr 
-(LACP*PRN*r)/3.dO 
-(LACP*PRN)-LACPt*PRN*r*Tr+r*RHO*U 
(-4*LACPt*PRN*r*Tz)/3.dO+r*RHO*W 
-(LACP*PRN*r) 
(-4*LACP*PRN*r)/3.dO 
-(LACPt*PRN*r*Uz)-LACPt*PRN*r*Wr 



DQ(MeqnP ,KderTz  ,ind) = (2*LACPt*PRN*U)/3.do & 
& +(2*LACPt*PRN*r*Ur)/3.do & 
& -(4*LACPt*PRN*r*Wz)/3.do 

ENDDO 

Special treatment at symmetry-inlet corner pt 
i   =1 
ind = 1 
DJ(MeqnU ,MvarU ,ind) = 1 
DJ(MeqnW ,MvarW ,ind) = 1 
DJ(MeqnT ,MvarT ,ind) = 1 
FORALL (k= =1:NSP) 
DJ(MeqnYK(k),MvarYK(k),ind) 
END FORALL 
DQ(MeqnP ,KderPr  ,ind) = 1 

CUT 

SOME VARIABLES MAY BE FIXED 

if (KVFIX.gt.O) then 
do ind=l,NODES 

do k=l,NVAR 
if (NFIX(k).eq.1) then 

do kk=l,NVAR 
kkderind=(kk-1)*NDRTP 
DJ(k,kk,ind) = O.dO 
DQ(k,kkderind+1,ind) = 0 dO 
DQ(k,kkderind+2,ind) = 0 dO 
DQ(k,kkderind+3,ind) = 0 dO 
DQ(k,kkderind+4,ind) = 0 dO 
DQ (k,kkderind+5,ind) = 0 dO 

enddo 
DJ(k,k,ind) = l.dO 

endif 
enddo 

enddo 
endif 

RETURN 
END 


